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1 Introduction

How reliable are peer effect estimates in published studies? Not very, according
to Josh Angrist’s critical assessment of the literature: “although correlation among
peers is a reliable descriptive fact, the scope for incorrect or misleading attributions
of causality in peer analysis is extraordinarily wide”, (Angrist, 2014, p. 98). Ob-
taining credible causal estimates of peer effects presents several challenges to re-
searchers. To address peer endogeneity, they must find, or generate, exogenous vari-
ations in peer groups and develop models of peer selection.1 To address mismea-
surement in peers, they must collect detailed data on social networks and develop
models of peer effects with unknown or mismeasured peers.2 Building on Manski
(1993), the methodological literature on peer effects has grown alongside the ap-
plied literature. Yet despite methodological advances, guaranteeing the reliability
of peer effect estimates remains challenging. Addressing multiple endogeneity is-
sues without resolving them all still leaves researchers some distance away from a
causal interpretation.

This paper focuses on a critical but understudied issue affecting the reliability of
peer effect estimates: measurement error in individual characteristics. It is likely a
first-order empirical issue in applications based on survey data (Bound, Brown, &
Mathiowetz, 2001) and experimental work (Gillen, Snowberg, & Yariv, 2019). Sur-
prisingly, however, it remains a blind spot in the existing literature. In the applied
literature on peer effects, problems raised by measurement error on covariates are al-
most never discussed or addressed. The methodological literature on this problem is
scarce, and will be comprehensively reviewed below. In short, this issue was identi-
fied by Moffitt (2001), highlighted by Angrist (2014), and studied by Ammermueller
and Pischke (2009); de Paula (2017); Feld and Zölitz (2017). These five papers,
however, only consider group interactions: agents are partitioned in groups, such
as classes within schools, and are affected by everyone in their group and by no one
outside it. In contrast, many recent studies of peer effects consider richer network
interactions. Our paper aims to address this gap by examining measurement error
in the context of network-based peer effects.

We provide the first analysis of measurement error when peer effects operate on
a network. We consider the benchmark linear-in-means model of exogenous peer

1For studies of peer effects with random peers see, e.g., Sacerdote (2001); Carrell, Sacerdote, and
West (2013); Corno, La Ferrara, and Burns (2022). For econometric approaches combining models of
peer effects in networks with models of network formation see, e.g., Goldsmith-Pinkham and Imbens
(2013); Hsieh and Lee (2016); Griffith (2022b).

2The literature on peer effects in networks has grown fast in the past 15 years, see Bramoullé,
Djebbari, and Fortin (2020) for a review. See, e.g., de Paula, Rasul, and Souza (2019); Griffith (2022a);
Boucher and Houndetoungan (2023); Lewbel, Qu, and Tang (2023) for models of peer effects with
imperfectly known peers.
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effects.3 An individual’s outcome is affected by their own characteristic and by the
average characteristic of their peers. A significant challenge arises when researchers
only observe a noisy proxy for the characteristic. Measurement error then occurs in
both own and average peer characteristic, and errors in the two variables are related
through the structure of the model. The presence of related measurement errors
on two regressors makes the problem non-standard. We adopt a many-networks
asymptotic framework and consider econometric specifications with or without net-
work fixed effects. Our investigation revolves around two central questions. First,
under what conditions does measurement error cause asymptotic biases in peer ef-
fect estimates? Second, what strategies can researchers employ to mitigate these
biases?

Consistent with existing research, our findings indicate that classical measure-
ment error typically leads to an expansion bias in peer effect estimates. Defying con-
ventional wisdom, estimates are then artificially inflated rather than attenuated.4

The presence and extent of this expansion bias crucially depend on the structure of
the network and on the interplay between network links and individual character-
istics. We show, first, that this bias only appears in the presence of homophily, when
an individual’s characteristic is positively correlated with their peers’ characteris-
tics. Under homophily, the average observed peer characteristic acts as a proxy for
the true individual characteristic and estimates of the peer effect capture part of the
individual effect. Averaging makes the average peer characteristic of an individual
less noisy – and hence a better proxy for the individual characteristic – when this
individual has more peers. Consequently, we find that the expansion bias tends to
be larger in networks with higher degrees. Our analysis further reveals that, beyond
degrees and correlation in friends’ characteristics, expansion bias tends to be lower
in networks with greater clustering and higher correlation in friends’ friends charac-
teristics. Either feature is associated with a larger independent variation in average
peer characteristics, reducing the bias. Overall, our study offers the first comprehen-
sive examination of how the expansion bias in peer effect estimates is influenced by
the structure of social interactions.

Homophily is widely documented in social networks (McPherson, Smith-Lovin,
& Cook, 2001). For example, it is common for college students to form friend-

3Analyzing the model with exogenous peer effects is arguably a necessary first step toward under-
standing the impact of errors-in-variables on peer effect estimates. We discuss in the Conclusion how
our analysis may extend to a model with exogenous and endogenous peer effects. In Appendix A.1,
we show that our results for the expansion bias are also applicable to the reduced-form estimator of
Griffith (2022a) and Griffith and Kim (2023).

4This conventional wisdom is based on the analysis of measurement error in the presence of one
mismeasured variable. It is well known that little can be said, in general, about the nature of the
asymptotic bias in OLS estimates if there is measurement error in multiple variables (see, e.g., Levi,
1973; Greene, 2003, 86).
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ships with peers who have comparable academic abilities, similar socioeconomic
backgrounds, and similar levels of parental education. Measures of these char-
acteristics in survey data, such as Add Health, are notoriously noisy, suggesting a
widespread risk of inflated peer effect estimates. Although homophily and the ex-
pansion bias disappear under complete randomization, they reappear in common
quasi-experimental setups, such as peer randomization within stratified groups.5

Our main findings on the anatomy of the bias are robust to the addition of net-
work fixed effects. These are commonly included to address concerns about net-
work formation on unobservables. In simulations, we find that both the globally
and the locally demeaned estimators tend to exhibit larger asymptotic biases than
the non-demeaned estimator – when the latter is also valid. The reason for this is
that differencing disproportionately removes the actual signal relative to underlying
noise. This mirrors what is observed in linear panel data models, where employing
first-differences often results in amplified attenuation biases (Griliches & Hausman,
1986). We show that for larger networks, the bias in globally demeaned estimates
can be close to that in non-demeaned estimates under common conditions.

In the first part of our analysis, we thus clarify how relationships between char-
acteristics and networks give rise to an expansion bias in peer effect estimates. In
the second part, we demonstrate how these relationships can actually be leveraged
to solve the problem. We show that the econometric model is generically identified
through mean and covariance restrictions, and without relying on external informa-
tion.6 Mean restrictions exploit potential associations between network positions
and the individual characteristic: for instance, when agents with more peers tend
to have a higher value for the characteristic. Covariance restrictions take advantage
of natural variations in how outcomes at one network position relate to observed
characteristics at another. We derive necessary and sufficient rank conditions for
identification based on either the mean or the covariance restrictions. These condi-
tions combine the interaction matrix and the characteristic’s first two moments, and
hold generically. In summary, we find that except in special cases, it is possible to
eliminate the expansion bias resulting from measurement errors.

To do so in practice, we propose generalized method of moments (GMM) and
instrumental variable (IV) estimators that are easy to implement. The GMM ap-
proach uses more information and is generally more efficient, albeit introducing
non-linearities in the estimation procedure. Moments are directly built from the

5Under complete randomization, inflated estimates might still occur when individuals are drawn
from a finite pool, giving rise to the exclusion bias (e.g., see Caeyers & Fafchamps, 2023).

6External information, when available, can of course help better identify the parameters of inter-
est. A standard method to address measurement error is to exploit multiple independent measure-
ments of the noisy variable (Reiersøl, 1941; Schennach, 2007). This can easily be combined with our
internal identification strategies.
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means and covariance restrictions highlighted in our identification results. In con-
trast, IV estimation is linear but typically less efficient. We propose a variety of valid
instruments, including network lags and network features. Monte-Carlo simula-
tions demonstrate the feasibility and good small sample performance of these esti-
mators.

Related literature. Following the work of Manski (1993), the applied literature on
peer effects has grown extensively.7 Peer effects have been studied in a wide vari-
ety of settings, ranging from the classroom (Lavy & Schlosser, 2011), through labor
supply (Nicoletti, Salvanes, & Tominey, 2018), to consumption decisions (De Giorgi,
Frederiksen, & Pistaferri, 2019). When it is suspected that characteristics may suffer
from measurement error, our results and the tools proposed here can aid empiri-
cal researchers to assess the size and direction of the resulting bias, and to obtain
consistent peer effect estimates. Our analysis also clarifies the impact of common
strategies to mitigate peer endogeneity (e.g., peer randomization, network fixed ef-
fects) on this bias.

Our analysis advances the sparse literature on measurement error and peer ef-
fects. Moffitt (2001) was the first to show formally that errors-in-variables can give
rise to an expansion bias in peer effect estimates. He discusses the type of policy
interventions that can help address the problem. Angrist (2014) highlights the role
played by measurement error in generating inflated peer effect estimates. He illus-
trates in Table 3 p.103 how adding noise to individual schooling leads to a large
increase in the estimate of average state schooling, in a regression on log wage. Ex-
ploiting variation across classes within schools, Ammermueller and Pischke (2009)
demonstrate that the inclusion of school fixed effects considerably reduces the mag-
nitude of class peer effect estimates. This discrepancy is attributed to the interplay
between errors-in-variables and homophily: when sorting into classes is random but
sorting into schools is not, the inclusion of school fixed effects removes the school-
level homophily that gives rise to the expansion bias. Feld and Zölitz (2017) show
that when assignment to classes is completely random, errors-in-variables only lead
to an attenuation bias. For the same setting, Feld and Zölitz (2022) propose a simple
bias correction procedure based on multiple noisy measurements of the true char-
acteristic.

Another strand of research concerns models with endogenous peer effects and
noisy outcomes. de Paula (2017, p. 310) shows that the covariance between peers’
mismeasured outcomes identifies the endogenous peer effect in a linear-in-means
model. The result operates under the assumption of homoscedastic and uncorre-

7For a theoretical and econometric discussion on linear social interaction models see, e.g., Blume,
Brock, Durlauf, and Jayaraman (2015).
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lated disturbances in the outcome equation. In the context of a game with misclas-
sified binary actions, Lin and Hu (2024) develop a consistent estimator based on
repeated measurements.

Taking a broader perspective, we also contribute to the literature on measure-
ment error in dependent data. In a seminal contribution, Griliches and Hausman
(1986) show how the errors-in-variables problem can be overcome in the standard
linear panel data model without resorting to outside information. Our use of network-
lagged characteristics as instruments resembles their use of time-lagged variables.
More recently, Evdokimov and Zeleneev (2020) study errors-in-variables in general
nonlinear semiparametric panel or network data models with fixed effects. In this
more general setting, they show how the lagged values of covariates can still serve
as instruments to overcome the bias. However, they assume that the variances of
the measurement errors shrink with sample size, which is rather restrictive in our
context.

Our work is also related to the literature on errors-in-variables in linear models
through its use of higher moments. In early contributions, Koopmans (1937) and
Reiersøl (1950) recognized that this approach fails if the observables are jointly nor-
mal distributed. Cragg (1997), Dagenais and Dagenais (1997), and Erickson and
Whited (2002) therefore impose rank conditions on third and higher moments to
ensure identification. Klepper and Leamer (1984) show that the first and second
moments can be used to bound the coefficients. More recently, Ben-Moshe (2021)
provides necessary and sufficient conditions for identification when there is mea-
surement error in all variables. Alternatively, if some variables are known to be
perfectly measured, the latter can be used to construct instruments. Lewbel (1997,
2012) and Ben-Moshe, D’Haultfœuille, and Lewbel (2017) construct valid instru-
ments from perfectly measured variables without using additional outside informa-
tion. Our approach differs from this literature in that we do not impose functional
form assumptions on the distribution of measurement error, nor full independence
of measurement error from the other variables in the model. Moreover, our results
do not require the presence of perfectly measured covariates. We also allow for
conditional heteroscedasticity in outcomes, which might be important in empirical
applications.

Outline of the paper. The remainder of this paper is organized as follows. Sec-
tion 2 introduces the linear-in-means model with and without network-specific fixed
effects and details the associated OLS estimators. In Section 3, we show that in the
presence of errors-in-variables, the OLS estimates for the peer effect might be in-
flated and analyze how this expansion bias depends on the underlying structure of
the social network. Section 4 provides formal conditions under which the linear-in-
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means model with errors-in-variables is identified. Based on these conditions, in
Section 5, we propose GMM and IV estimators that are straightforward to imple-
ment. Section 6 contains a Monte Carlo simulation to illustrate our main results.
Finally, Section 7 concludes. All proofs are in the Appendix.

2 Setup

A researcher observes data on outcomes, characteristics, and peers, and wants to
estimate the impact of peers’ characteristics on individual outcomes. We consider
a data-generating process where a sequence {ys,xs, es,us,As}s=1,...,S of S i.i.d. net-
work observations is drawn from a joint distribution. Network s has size Ns, ys is
a Ns × 1 vector of outcomes, xs is a Ns × 1 vector of continuous characteristics, es

is a Ns × 1 vector of disturbances, us is a Ns × 1 vector of measurement errors, and
As is the Ns × Ns adjacency matrix of network s where (As)ij = 1 if j is a peer
of i and 0 otherwise. The researcher observes outcomes ys, networks As and mis-
measured characteristics x̃s = xs + us. We assume that the size of networks Ns is
uniformly bounded and consider many-network asymptotics. The number of ob-
servations N =

∑S
s=1Ns → ∞ as the number of networks S → ∞. Throughout, all

probability limits are with respect to N and are assumed to exist and to be finite.
The assumption that outcomes, characteristics, and networks are jointly deter-

mined is fairly general. This notably covers setups with fixed networks as well as
stochastic models of network formation. We say that the network is fixed when all
network observations have the same non-stochastic network structure, i.e., ∀s,As =

A0. Note that in this case, individual characteristics can still depend on network
positions.

A network is connected when there is a network path between any pair of indi-
viduals. It is regular if every individual has the same degree. The network distance
between two individuals is the length of a shortest path between them. The diameter
of a network is the maximum network distance between any pair.

2.1 Model

We assume that social networks are undirected and without isolated individuals.8

The neighborhood of individual i, Nsi, is the set of i’s peers, j ∈ Nsi ⇐⇒ (As)ij = 1.
Formally, all connections are reciprocal, (As)ij = (As)ji, and every individual has
at least one peer, ∀i,Nsi 6= ∅. We say that the social network takes the form of a
group if ∀i, j : i 6= j, we have that (As)ij = 1. The degree of individual i, di, is the

8Most of our results hold with directed networks. This applies, in particular, to Propositions 1
and 2.
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number of i’s peers, di = |Nsi| =
∑

j(As)ij ≥ 1. Introduce the interaction matrix, Gs,
as (Gs)ij = (As)ij/di. This matrix is row-normalized — every row sums to one —
and captures linear-in-means interactions.

As our baseline specification, we consider the standard linear-in-means model of
social interactions,

ysi = α + γxsi + δ
1

di

∑
j∈Nsi

xsj + esi,

x̃si = xsi + usi,

in which individual i’s outcome depends on her own characteristic (captured by γ)
and her peers’ average characteristic (captured by δ). The disturbance in the out-
come equation is assumed to satisfy the standard conditional mean independence
condition E(esi | xs,Gs,us) = 0. Measurement error arises because the researcher
only observes a noisy proxy x̃si for the true characteristic xsi.9 Stacking observations,
this model can be written compactly in matrix notation as

ys = αι + γxs + δxs + es, (1a)

x̃s = xs + us, (1b)

in which xs = Gsxs and x̃s = Gsx̃s. Regressors without measurement error can be
partialled out using the Frisch-Waugh-Lovell (FWL) theorem.

We also study an extended specification of the model that allows for network-specific
fixed effects,

ys = αsι + γxs + δxs + es, (2a)

x̃s = xs + us, (2b)

with E(es | αs,xs,Gs,us) = 0 and where E(αs | xs,Gs) may be different from 0.
This addition makes the conditional mean independence condition more palatable,
especially in settings where there might be clustering on unobservables.

We will assume throughout this paper that the conditional mean, variance, and
pairwise covariance of the measurement error do not depend on any of the other
variables in the model, nor on the structure of the social network.

9It is well known that measurement error in the dependent variable does not induce asymptotic
bias in OLS estimates. We therefore only consider measurement error in the independent variables.
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Assumption 1. The measurement errors satisfy:

E(usi | αs,xs,Gs, es) = 0,

E(u2
si | αs,xs,Gs, es) = σ2

u,

E(usiusj | αs,xs,Gs, es) = 0.

In particular, we make no identifying assumptions on higher moments of the
variables in the model, nor do we require full independence of the measurement
error or the disturbance in the outcome equation. Furthermore, we refrain from
making distributional assumptions such as (non)normality.

2.2 OLS estimators

Define y = vec(y1,y2, . . . ,yS), x̃ = vec(x̃1, x̃2, . . . , x̃S), e = vec(e1, e2, . . . , eS), u =

vec(u1,u2 , . . . ,uS), and let G = diag(G1,G2, . . . ,GS) be the block-diagonal matrix
that contains the interaction matrices. The OLS estimator for the baseline specifica-
tion can then be written asα̂

OLS

γ̂OLS

δ̂OLS

 =
([

ι x̃ x̃
]ᵀ [

ι x̃ x̃
])−1 [

ι x̃ x̃
]ᵀ

y.

As a result of the FWL theorem, we can simplify the exposition by partialling out
the intercept, which gives a numerically identical estimator for the two parameters
of interest,[

γ̂OLS

δ̂OLS

]
=
([

Wbx̃ Wbx̃
]ᵀ [

Wbx̃ Wbx̃
])−1 [

Wbx̃ Wbx̃
]ᵀ

Wby, (3)

where Wb = IN −N−1JN , with IN and JN theN ×N identity and all-ones matrices,
respectively. In this reformulation, all variables are expressed in terms of deviations
from their sample means.

The extended specification with network-specific fixed effects is typically esti-
mated by including network-specific dummy variables in the OLS estimator:α̂

OLS
g

γ̂OLSg

δ̂OLSg

 =
([

F x̃ x̃
]ᵀ [

F x̃ x̃
])−1 [

F x̃ x̃
]ᵀ

y,

in which F = diag(ιN1 , ιN2 , . . . , ιNS
). Again as a result of the FWL theorem, a numer-

ically identical estimator for the two parameters of interest is given by replacing the
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differencing matrix Wb with Wg = IN − diag(N−1
1 JN1 , N

−1
2 JN2 , . . . , N

−1
S JNS

) in Ex-
pression (3). The dummy variable approach is therefore equivalent to OLS regres-
sion on the network-demeaned variables. The resulting globally-demeaned estimates
γ̂OLSg and δ̂OLSg resemble the within estimates from panel data analysis.

It is also possible to obtain valid estimates using other differencing operations.10

For example, if the differencing matrix is set to Wl = IN −G, the demeaning takes
place among direct peers. The resulting locally-demeaned estimates γ̂OLSl and δ̂OLSl re-
semble the first-difference estimates from panel data analysis. As we will see below,
both estimators can exhibit quite different asymptotic biases.

Given two random variables a and b, we let E(a) denote the expectation of a,
V(a) the variance of a, and C(a, b) and ρ(a, b) the covariance and correlation be-
tween a and b, respectively. In particular, E(a) = plim N−1

∑
s

∑
i asi and C(a, b) =

plim N−1
∑

s

∑
i asibsi − E(a)E(b).

3 Expansion bias

3.1 Baseline specification

We first study the asymptotic bias for a fixed interaction matrix G0 of size N0 so
that G = IS ⊗ G0, where ⊗ denotes the Kronecker product. We denote positions
within this network with a 0 subscript. By substituting Equations (1a) and (1b) in
(3), the asymptotic bias of γ̂OLS and δ̂OLS can be derived in terms of the true model
parameters and of the variance-covariance matrices S and Σ of the regressors and
the measurement errors, respectively. Formally, we have that

plim
[
γ̂OLS

δ̂OLS

]
= (S + Σ)−1S

[
γ

δ

]
, (4)

in which

S = plim N−1

[
xᵀWbx xᵀWbx

xᵀWbx xᵀWbx

]
=

[
V(x) C(x, x)

C(x, x) V(x)

]
, (5a)

Σ = plim N−1

[
uᵀWbu uᵀWbu

uᵀWbu uᵀWbu

]
=

[
V(u) C(u, u)

C(u, u) V(u)

]
. (5b)

Note that if there is no measurement error, Σ = 0 and (S+Σ)−1S = I, and therefore
there is no asymptotic bias, as expected. In most settings, the presence of measure-
ment error entails an attenuation bias, such that OLS estimates are smaller than the

10Note that all W 6= 0 such that Wι = 0 can be used to difference out the network-specific inter-
cept.
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true model parameters (e.g., see Wansbeek & Meijer, 2000 for a detailed discussion).
As argued above, however, this is generally not the case for the peer effects coefficient
in the linear-in-means model.

The linear-in-means model imposes additional structure on the variance-covariance
matrix of the measurement error. First, as the measurement error is homoscedastic
and uncorrelated across pairs of peers, we have that V(u) = plim N−1

∑
s

∑
i u

2
si =

σ2
u and C(u, u) = plim N−1

∑
s

∑
i usiusi = 0, which entails that the off-diagonal el-

ements of Σ are zero. Second, due to the averaging across peers, the measurement
error for the average peer characteristic has a smaller variance than that for the own
characteristic. We have:

V(u) = plim N−1
∑
s

∑
i

u2
si

= N−1
0

∑
i0

E((G0u0)2
i0

)

= N−1
0

∑
i0

E

(∑
j0

gi0j0uj0

)2


= N−1
0

∑
i0,j0

g2
i0j0

E(uj0)
2

= N−1
0

∑
i0,j0

ai0j0d
−2
i0
σ2
u

= h0σ
2
u,

(6)

where
h0 = N−1

0

∑
i0

d−1
i0
,

is the arithmetic mean of the inverse degrees of the network. This first key network
statistic captures the overall extent of the averaging across peers in the network. In
particular, we have 0 < 1

dmax
≤ h0 ≤ 1

dmin
≤ 1, where dmax and dmin denote the largest

and lowest degree in the network, respectively.
Substituting these simplifications in Equation (5) and expanding (4), we can

state the following result for the baseline model.

Proposition 1. Suppose that Assumption 1 holds. OLS estimates of γ and δ converge in
probability to

plim

[
γ̂OLS

δ̂OLS

]
= D−1

[
∆ + h0V(x)σ2

u h0C(x, x)σ2
u

C(x, x)σ2
u ∆ + V(x)σ2

u

][
γ

δ

]
= B

[
γ

δ

]
,
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where

D = ∆ + h0V(x)σ2
u + V(x)σ2

u + h0σ
4
u,

∆ = det(S) = V(x)V(x)− C(x, x)2.

Since 0 ≤ b11 ≤ 1 and 0 ≤ b22 ≤ 1, both γ̂OLS and δ̂OLS exhibit an asymptotic
attenuation effect with respect to their associated true parameter values. However,
if b12 6= 0 (or equivalently, b21 6= 0) an expansion effect also occurs, due to weight-
shifting between the two variables. In that case, the OLS estimates erroneously pick
up some of the effect of the other variable. This weight-shifting notably depends
on C(x, x) and on V(x), which in turn depend on the data-generating process and
on the relation between characteristics and links. One can interpret ∆ as a mea-
sure of the amount of independent variation between individual characteristic and
peer characteristic.11 The expansion bias tends to be larger when this independent
variation is lower.

For clarity of exposition, in the remainder of this section we focus on the case
where there is no true peer effect, i.e., δ = 0. The anatomy of the expansion bias is
further explored in the following proposition.

Proposition 2. Suppose that Assumption 1 holds and that there is no peer effect, i.e., δ = 0.
If C(x, x) > 0, then δ̂OLS has an asymptotic expansion bias in the direction of γ. It is zero
when σ2

u = 0 or +∞, and maximal when σ2
u =

(
h−1

0 ∆
) 1

2 . If C(x, x) = 0, there is no
asymptotic bias. The maximal bias is equal to

max
σ2
u

{
plim δ̂OLS

}
=

C(x, x)

2
√
h0∆ + V(x)

γ.

Proposition 2 shows that the emergence of an expansion bias is crucially related
to the presence of homophily in the network. A network displays homophily when
similar individuals are relatively more likely to be connected. The expansion bias
appears when C(x, x) > 0, which means that an individual’s characteristic is posi-
tively correlated with the average of their peers’ characteristic, a sign of homophily.
By contrast, there is no expansion bias when C(x, x) = 0 and when an individual’s
characteristic and their average peer characteristic are uncorrelated. This happens,
for instance, when links are randomly assigned and the individual characteristic is
distributed in an i.i.d. way across individuals.12

11As noted by Abel (2018), for any arbitrary covariance matrix [V]st = C(vs, vt), Hadamard’s in-
equality implies that 0 ≤ det(V) ≤

∏
tV(vt). The lower bound is attained when there is perfect lin-

ear dependence between variables; the upper bound is attained when there is no linear dependence.
Therefore, det(V) acts as a measure of linear dependence between variables and is sometimes called
the generalized variance.

12By contrast, when individuals are selected from a finite pool, random links may give rise to a neg-
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Under homophily, the peers’ average observed characteristic acts as a proxy for
the true individual characteristic. The apparent estimate of the peer effect then cap-
tures part of the individual effect, leading to an asymptotic bias. From the formulas
presented in Propositions 1 and 2, we see that expansion bias tends to be higher
when homophily is higher and when degrees are higher (i.e., when average inverse
degree is lower). In these cases, the peers’ average observed characteristic becomes
a better proxy for the true, unobserved individual characteristic, leading to a larger
bias. These comparative statics are only valid when V(x) is held constant, however,
which complicates interpretation. We address this issue below.

Proposition 2 also shows that the expansion bias displays an inverse-U shape as a
function of measurement error variance, in the absence of true peer effects. This non-
monotonicity is intuitive. There is no bias when there is no measurement error. And
when measurement error is very large, observed characteristics essentially contain
no information, leading to a valid zero estimate for peer effects. More generally,
Proposition 1 shows that plim γ̂OLS, δ̂OLS → 0 when σ2

u becomes large.
Even simpler expressions than those in Proposition 1 can be obtained when mea-

surement error is small.

Corollary 1. Suppose that Assumption 1 holds and that σ2
u ≈ 0. OLS estimates of γ and δ

converge in probability to

plim

[
γ̂OLS

δ̂OLS

]
≈

[
1− V(x)

∆
σ2
u

h0C(x,x)
∆

σ2
u

C(x,x)
∆

σ2
u 1− h0V(x)

∆
σ2
u

][
γ

δ

]
.

Under the conditions of Corollary 1, if δ = 0 the expansion bias for δ̂OLS is simply
proportional to C(x,x)

∆
σ2
u. Observing that ∆ = (1− ρ(x, x)2)V(x)V(x), it holds that

plim δ̂OLS ≈ C(x, x)

∆
σ2
uγ =

ρ(x, x)

1− ρ(x, x)2

1√
V(x)V(x)

σ2
uγ.

The expansion bias is therefore zero when the correlation ρ(x, x) = 0 and grows
large when ρ(x, x)→ 1; it is decreasing in variances V(x) and V(x).

The extent of the expansion bias thus depends on statistics such as C(x, x) and
V(x), which both depend on the underlying data generating process. To better un-
derstand how expansion bias depends on network features, we now add some struc-
ture. Consider a fixed network G0 and let d(i0, j0) denote the network distance be-
tween node i0 and node j0.

ative correlation between individual characteristic and average peer characteristic due to the exclu-
sion bias (e.g., see Caeyers & Fafchamps, 2023). The peer effect estimate then displays an expansion
bias in the opposite direction from γ.
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Assumption 2. Consider a fixed network G0 and assume that for any two nodes i0, j0

E(xi0) = µx,

V(xi0) = σ2
x,

C(xi0 , xj0 | d(i0, j0) = 1) = ρ1σ
2
x,

C(xi0 , xj0 | d(i0, j0) = 2) = ρ2σ
2
x,

with 0 ≤ ρ2 < ρ1.

Under Assumption 2, the network is fixed and neither the expectation and nor
the variance of an individual’s characteristic depends on this individual’s position
in the network. Moreover, the correlations between the characteristics of friends (at
distance 1) and of friends of friends (at distance 2) are constant; these correlations
are greater than or equal to zero and lower at distance 2 than at distance 1.

A simple way to generate data consistent with Assumption 2 is as follows. Con-
sider a fixed network of size N0. Set, for instance, C(xi0 , xj0) = 0 if d(i0, j0) ≥ 3.
Let V be the N0 × N0 variance-covariance matrix such that Vi0j0 = C(xi0 , xj0) = σ2

x

if i0 = j0, ρ1σ
2
x if d(i0, j0) = 1, ρ2σ

2
x if d(i0, j0) = 2, and 0 otherwise. If V is positive

semi-definite, pick i.i.d. draws from the multivariate normal distributionN(µxι,V).
Given these assumptions, we can simplify the expressions for C(x, x) and V(x).

Define the clustering coefficient of node i0, ci0 , as the likelihood that any two friends
of i0, picked at random, are also friends. Formally,

ci0 =

∑
j0 6=k0∈Ni0

aj0k0

di0(di0 − 1)
, (7)

if di0 ≥ 2 and ci0 = 0 if di0 = 1. This is a standard index that captures the tendency
of individuals with common friends to be connected. Clustering is typically high in
real social networks, as two agents with a common friend are generally much more
likely to be connected than two random agents.

Lemma 1. Suppose that Assumption 2 holds. Then we have that

C(x, x) = ρ1σ
2
x,

V(x) = (h0 + h1ρ1 + h2ρ2)σ2
x,

where h1 = N−1
0

∑
i0

di0−1

di0
ci0 and h2 = 1− h0 − h1 ≥ 0.

Lemma 1 shows that the variance of average peers’ characteristics is a weighted
mean of the variances of the characteristics of individual nodes and the covariances
of the characteristics of nodes at distances 1 and 2. The first weight is the aver-
age inverse degree, h0. The weight on the covariance of nodes at distance 1 is a

13



new network index, h1, equal to a linear combination of the nodes’ clustering coef-
ficients multiplied by 1 minus inverse degree. When all nodes’ degrees are large,
h1 is approximately equal to the network’s average clustering. In general, h1 differs
from average clustering by placing less weight on low-degree nodes. Note also that
h0 + h1 ≤ 1, so that the residual weight on the covariance of nodes at distance 2,
h2 = 1− h0 − h1 is greater than or equal to zero.

The variance of average peers’ characteristics depends on correlations in char-
acteristics for every pair of neighbors of a node. If these neighbors are connected
themselves, this correlation is ρ1, while it is ρ2 if they are unconnected. Clustering
computes the proportion of these pairs that are connected. Thus, when ρ1 > ρ2,
V(x) tends to increase when clustering is higher. The following example illustrates
Lemma 1.

Example 1. Consider the following network with 4 nodes

i0 j0

k′0

k0

.

We have: di0 = 1, dj0 = 3, dk0 = dk′0 = 2, leading to

h0 =
1

4

(
1

1
+

1

3
+

1

2
+

1

2

)
=

7

12
,

and ci0 = 0, cj0 = 1
3
, ck0 = ck′0 = 1, leading to

h1 =
1

4

(
0

1
0 +

2

3

1

3
+

1

2
1 +

1

2
1

)
=

11

36
,

such that
V(x) =

(
21

36
+

11

36
ρ1 +

4

36
ρ2

)
σ2
x.

Combining Lemma 1 and Proposition 1, we obtain the following expression for
the expansion bias of the peer effect estimate. Denote by φ = σ2

u/σ
2
x the noise-to-

signal ratio.

Proposition 3. Suppose that Assumptions 1 and 2 hold and that there is no peer effect, i.e.,
δ = 0. Then, δ̂OLS has the asymptotic expansion bias

plim δ̂OLS =
ρ1φ

(1 + φ)(h0 + h1ρ1 + h2ρ2)− ρ2
1 + h0φ+ h0φ2

γ.
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This expansion bias (i) increases in ρ1; (ii) decreases in ρ2; (iii) decreases in h0; and (iv)
decreases in h1.

The maximal bias is

max
σ2
u

{
plim δ̂OLS

}
=

ρ1σ
2
x

2
√
h0(h0 + h1ρ1 + h2ρ2)σ2

x + σ2
x

γ.

Proposition 3 clarifies how expansion bias depends on the network structure.
Expansion bias increases with ρ1, an index of homophily, as this increases weight
shifting. Expansion bias decreases with ρ2 and with the clustering measure h1. An
increase in either measure increases V(x) without affecting C(x, x). This yields an
increase in the independent variation in average peer characteristics which lowers
the bias. Expansion bias decreases in average inverse degree h0, as lower degrees
mean that the mismeasured peer characteristic is more noisy and the estimated peer
effect then captures less of the true individual effect.

Proposition 3 applies to any network structure and hence to cases where agents
interact in groups. In a group of size N0, di = N0 − 1 and h0 = (N0 − 1)−1. There
are no pairs of agents at distance two, which means that h2 = 0 and h1 = 1− h0. In
addition, in most settings with cross-sectional data individuals’ labels do not mat-
ter under group interactions. Peers’ characteristics are then exchangeable random
variables. As a result, the requirement of homogeneous expectations, variances and
covariances in Assumption 2 is innocuous when considering groups. The expres-
sion for the expansion bias in Proposition 3 simplifies as follows.

Corollary 2. Suppose that Assumptions 1 and 2 hold and that there is no peer effect, i.e.,
δ = 0. If the social graph takes the form of a group, then δ̂OLS has the asymptotic bias

plim δ̂OLS =
ρ1φ

(1 + φ)(h0 + (1− h0)ρ1)− ρ2
1 + h0φ+ h0φ2

γ.

with h0 = (N0 − 1)−1. The expansion bias (i) increases in ρ1; and (ii) increases in N0.
The maximal bias is

max
σ2
u

{
plim δ̂OLS

}
=

ρ1σ
2
x

2
√
h0(h0 + (1− h0)ρ1)σ2

x + σ2
x

γ.

Corollary 2 complements earlier results obtained by Feld and Zölitz (2017) on
group interactions. One difference between our setup and theirs is that they consider
leave-in means, which are computed over every one in the group, and hence double-
count the characteristic of the focal agent. By contrast, we consider leave-out means
computed over everyone else in the group.13 The findings that the expansion bias is

13We provide additional results for the setting with leave-in means in Appendix A.2.
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increasing in ρ1 and N0 prove to be robust to the way the mean is computed.
Up to this point, the results in this section were derived for a fixed network struc-

ture G0. In general, however, the data-generating process may induce a distribution
over network structures, where network Gs of size Ns is picked with probability
ps. One can show that the overall asymptotic variance-covariance matrices can be
decomposed as

S =
∑
s

Nsps∑
tNtpt

Ss,

Σ =
∑
s

Nsps∑
tNtpt

Σs,

where the weights adjust for the differences in network sizes. This means that the
expansion bias can be expressed in terms of a weighted average of inverse degree
and clustering

h0 = E(h0(Gk)) =
∑
s

Nsps∑
tNtpt

h0(Gs),

h1 = E(h1(Gk)) =
∑
s

Nsps∑
tNtpt

h1(Gs).

To sum up, expansion bias generally increases with the correlation between indi-
vidual and average peer characteristics and decreases with the variance of average
peer characteristics. Our results show that the expansion bias is higher for networks
with higher degrees, lower clustering coefficients, higher correlation in friends’ char-
acteristics, and lower correlation in friends’ friends characteristics. Overall, we find
that this expansion bias crucially depends on the network structure and on the re-
lation between links and characteristics.

3.2 Extended specification

We now turn to the asymptotic bias in the extended specification that allows for
network-specific fixed effects. It turns out that the globally- and locally-demeaned
OLS estimators also typically exhibit expansion bias. The differencing operation
makes analysis more complicated however: the nature and extent of the bias now
depends on correlations between pairs at larger distances. Additional network fea-
tures, besides average inverse degree and clustering, come into play. As in the base-
line model, the presence of expansion bias can be connected to statistics that are es-
timable by the researcher, such as the covariance between demeaned own and peer
characteristics Cw(x, x) and the variance of demeaned own characteristics Vw(x). As
previously, subscript g refers to global demeaning, while l refers to local demeaning.
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We derive exact formulas for the probability limit of the peer effect estimates in the
Appendix. In the following Proposition, we describe a simple sufficient condition
for the emergence of expansion bias and we provide formulas for the asymptotic
biases when measurement error is small.

Proposition 4. Suppose that Assumption 1 holds and that there is no peer effect, i.e., δ = 0.
If for w ∈ {g, l} it holds that Cw(x, x) > 0, then δ̂OLSw has an asymptotic expansion bias in
the direction of γ. Moreover, if σ2

u ≈ 0, the asymptotic biases of δ̂OLSg and δ̂OLSl are

plim δ̂OLSg ≈ (1−N−1
0 )Cg(x, x) +N−1

0 Vg(x)

∆g

σ2
uγ,

plim δ̂OLSl ≈ (1 + h0)Cl(x, x) + (h0 + n10 − n20)Vl(x)

∆l

σ2
uγ,

where ∆w = Vw(x)Vw(x)− Cw(x, x)2, n10 = N−1
0

∑
i0,j0

gi0j0gj0i0 , and
n20 = N−1

0

∑
i0,j0,k0

gi0j0gi0k0gk0j0 .

Proposition 4 shows that correlations within the demeaned data, Cw(x, x) > 0,
are a sufficient condition for the expansion bias to arise. Next, contrast the formulas
for the asymptotic bias with and without network fixed effects. Recall that, from
Corollary 1 we know that plim δ̂OLS = C(x,x)

∆
σ2
uγ in the baseline model with small

measurement error. The formula for plim δ̂OLSg is similar and, in particular, does
not involve additional network statistics. We note two differences: covariances and
variances are computed over the demeaned variables and there is an additional term
scaling with N−1

0 . As network size N0 increases, and if variations in variances and
covariances are bounded, this new term becomes negligible. In fact, we show in
Appendix A.3 that even when measurement error is large, plim δ̂OLSg −plim δ̂OLS →
can tend to 0 when N0 tends to infinity.

By contrast, the asymptotic bias of the locally-demeaned estimator involves ad-
ditional network parameters n10 and n20. They are related to how degree and clus-
tering are distributed throughout the network:

n10 = N−1
0

∑
i0

d−1
i0

∑
j0∈Ni0

d−1
j0
,

n20 = N−1
0

∑
i0

d−2
i0

∑
j0 6=k0∈Ni0

d−1
k0
aj0k0 .

We see that n10 is equal to the average of peers’ average inverse degrees, while n20

involves a combination of clustering and degree. For instance, when the network is
regular and ∀i, di = d, we have n10 = h0 = d−1 and n20 = d−1h1.

To illustrate how the asymptotic bias depends on underlying network features,
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we consider the class of strongly regular graphs. A regular graph is strongly regular
when every pair of connected agents has λ common neighbors. For strongly regular
graphs, the key network statistics h0 and h1 are simply related to the parameters
of the model: h0 = 1

d
and h1 = λ

d
. We also consider the following variation on

Assumption 2.

Assumption 3. Consider a fixed network G0 and assume that for any two nodes i0, j0

E(xi0) = µx,

V(xi0) = σ2
x,

C(xi0 , xj0 | d(i0, j0) = t) = ρtσ
2
x, t ∈ {1, 2, . . . , T},

with 0 ≤ ρt+1 ≤ ρt ≤ 1 and where T denotes the diameter of the network.

We show in Appendix A.4 that when the graph is strongly regular, Assump-
tions 1 and 3 hold, σ2

u ≈ 0 and N0 → ∞, then the peer effect estimate under global
demeaning, δ̂OLSg , has the following asymptotic expansion bias:

plim δ̂OLSg ≈ ρ1 − ρ2

h0(1− ρ2)2 + h1(ρ1 − ρ2)(1− ρ2)− (ρ1 − ρ2)2
σ2
uγ.

In particular, this expansion bias (i) increases in ρ1; (ii) decreases in ρ2; (iii) de-
creases in h0; and (iv) decreases in h1. The main results from the baseline setting
and Proposition 3 thus remain valid in this case.

Monte Carlo simulations from Section 6 suggest that the same holds true for the
locally-demeaned specification. These simulations also provide suggestive evidence
of a tendency toward greater expansion bias in the globally- and locally- demeaned
estimators than in the non-demeaned estimator – when the latter is also valid. The
reason for this is that differencing disproportionately removes the actual signal rel-
ative to the underlying noise. This mirrors what is observed in linear panel data
models, where employing first-differences often results in amplified attenuation bi-
ases (Griliches & Hausman, 1986).

One important case where the expansion bias disapppears is when links are
formed at random. More precisely, suppose that correlations between character-
istics are constant across the network. Both differencing operations then remove all
variation that induces expansion bias.

Proposition 5. Suppose that Assumptions 1 and 3 hold and that the correlation does not
depend on network distance: i.e., ρ = ρd for all d. Then there is only an attenuation bias in
both the globally- and locally- demeaned OLS estimators, i.e.,

plim γ̂OLSg = plim γ̂OLSl = aγγγ,

plim δ̂OLSg = plim δ̂OLSl = aδδδ,
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where aγγ = aδδ = (1−ρ)σ2
x

(1−ρ)σ2
x+σ2

u
.

Proposition 5 extends to networks results obtained by Ammermueller and Pis-
chke (2009) for groups. An interesting implication is that in this case, the strength
of the peer effect relative to the individual effect does not suffer from an asymptotic
bias: i.e., plim δ̂OLS

g

γ̂OLS
g

= plim δ̂OLS
l

γ̂OLS
l

= δ
γ

(see Ammermueller & Pischke, 2009, p.335).
The assumption of distance-independent correlation covers, in particular, situ-

ations where links are formed at random within stratified groups.14 Suppose that
the characteristic of individual i in network s can be decomposed into the sum of
two i.i.d. components: i.e., xsi = ξs + ξsi. If the links within network s are formed
randomly, the correlation between pairs of individuals at all distances is equal to

ρ =
V(ξs)

V(ξs) + V(ξsi)
.

This applies to situations where individuals sort themselves into different groups,
and links are then random conditional on groups.

Even without network fixed effects, Proposition 2 shows that OLS estimates of
the peer effect parameter suffer from an expansion bias under conditionally ran-
dom links when ρ > 0. By contrast, Proposition 5 shows that the expansion bias
disappears for the two demeaned estimators in this case. Demeaning might thus be
worthwhile even in the absence of network fixed effects.

4 Identification

We now focus on the identification of the linear-in-means model of peer effects, ac-
counting for errors-in-variables. Our aim is to establish the conditions required for
identification in this model, both necessary and sufficient. We demonstrate that the
model exhibits generic identification properties, even in the absence of external in-
formation. In particular, inherent features of the network can serve as a valuable tool
for mitigating measurement error and enabling the identification of peer effects.

Identification hinges on one of two complementary approaches. The first strat-
egy, based on mean restrictions, exploits variation in average individual characteris-
tics across network positions. This strategy is valid when, for instance, agents with
more friends tend to have a higher value for the characteristic. The second identifi-
cation strategy, based on covariance restrictions, exploits variation in variances and
covariances of individual characteristics across (pairs of) network positions. Only
in special cases does this strategy fails to work.

14As before, non-zero correlations under random assignment can also arise under the circum-
stances that give rise to the exclusion bias (Caeyers & Fafchamps, 2023).

19



Our analysis focuses on the cross-sectional setting where a fixed interaction ma-
trix G0 is observed repeatedly by the analyst. We maintain our weak assumptions on
disturbances e and measurement error u and, as a consequence, consider identifica-
tion based on the following means and covariances. Researchers willing to impose
more structure on these variables could exploit other moments for identification.
We consider, first, expected outcomes as functions of network positions:

E(ys | θ) = plim S−1
∑
s

ys(θ).

We then consider how the outcome in one network position co-varies with the ob-
served characteristic in another position:

C(ys, x̃s | θ) = plim S−1
∑
s

ys(θ)x̃
ᵀ
s(θ)−

(
plim S−1

∑
s

ys(θ)

)(
plim S−1

∑
s

x̃ᵀ
s(θ)

)
.

The model is identified when there are no two parameter vectors θ1 and θ2 with θ1 6= θ2

such that these means and covariances are identical, i.e., E(ys | θ1) = E(ys | θ2) and
C(ys, x̃s | θ1) = C(ys, x̃s | θ2). The model is thus identified when the mapping from
the parameters to these moments is injective.

We say that identification is generic if non-identification only occurs on a lower-
dimensional subset. Let m̃ = E(x̃s) ∈ M ⊆ RN0 be the vector that collects the
average characteristic by network position and Ṽ = V(x̃s) ∈ V ⊆ RN0×N0 the matrix
that collects the covariances of characteristics between these positions. Identification
on means and covariances is generic if

dim
{

m̃ : θ1 6= θ2 =⇒ E(ys | θ1) = E(ys | θ2)
}
< dim M ,

dim
{

Ṽ : θ1 6= θ2 =⇒ C(ys, x̃s | θ1) = C(ys, x̃s | θ2)
}
< dim V ,

respectively.

4.1 Baseline specification

We first consider identification in the baseline specification. One source of identifi-
cation is provided by mean restrictions. Under Assumption 1, and using the structure
of the model in Expressions (1a) and (1b), expected outcome for every network po-
sition i0 is given by

E(yi0) = α + γE(x̃i0) + δE(x̃i0). (8)

Since there are N0 network positions in total, this yields a linear system of N0 equa-
tions in three unknowns. In many cases, however, the number of relevant equations
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is lower, as those belonging to symmetric positions contain redundant information.15

We therefore only consider equations that belong to unique network positions.
Parameters α, γ, and δ are identified when the system of equations (8) has full

rank, that is, rank three. This can only happen when E(x̃i0) varies with i0 and in the
presence of three unique network positions. These two necessary conditions may
not be sufficient however, as the following example illustrates.

Example 1 (continued). Again consider the network with 4 nodes from Example 1. In this
example there are only three unique network positions, as k0 and k′0 are indistinguishable by
the researcher. Identification based on mean restrictions holds iff the matrix1 E(xi0) E(xi0)

1 E(xj0) E(xj0)

1 E(xk0) E(xk0)

 =

1 E(xi0) E(xj0)

1 E(xj0)
1
3
E(xi0) + 2

3
E(xk0)

1 E(xk0)
1
2
E(xj0) + 1

2
E(xk0)


is invertible. Identification fails, for example, if the expectations satisfy

(E(xi0),E(xj0),E(xk0)) =

(
1,

1

2

(√
11

3
− 1

)
, 0

)
,

and there are infinitely many such configurations. These cases, however, are non-generic.
Note that the mean restriction for node k′0 is identical to that of k0 and therefore does not

add any information, since the two nodes cannot be distinguished from the point of view of
the researcher.

Another source of identification is provided by covariance restrictions. For every
pair (i0, j0) of network positions, they are defined as the association between the out-
come at position i0 and the observed characteristic at position j0. We can distinguish
three cases depending on the distance between the pair:

C(yi0 , x̃j0) =


γV(x̃2

i0
) + δC(x̃i0 , x̃i0)− γσ2

u, i0 = j0,

γC(x̃i0 , x̃j0) + δC(x̃j0 , x̃i0)− 1
di0
δσ2

u, d(i0, j0) = 1,

γC(x̃i0 , x̃j0) + δC(x̃j0 , x̃i0), d(i0, j0) ≥ 2.

(9)

Taken together, these equations yield a nonlinear system of N2
0 equations in three

unknowns. As previously, however, only unique positions contribute towards iden-
tification.

15The presence of symmetric network positions reduces the informational content of the data,
as the joint distribution is exchangeable in these positions. The network contains symmetric net-
work positions when there exists a permutation π of the nodes such that (As)ij = 1 if and only if
(As)π(i)π(j) = 1 for all i, j.
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Intuitively, we see that except for knife-edge cases, most networks deliver a sub-
stantial degree of overidentification through both mean and covariance restrictions.
The following theorem makes this statement formal.

Theorem 1. Suppose that Assumption 1 holds.

1. The parameters (α, γ, δ) are identified from the mean restrictions if and only if the
vectors ι, m̃, and G0m̃ are linearly independent. This can only happen when there are
at least three unique network positions.

2. Suppose that either γ 6= 0 or δ 6= 0. Then the parameters (γ, δ, σ2
u) are identified from

the covariance restrictions if and only if the matrices I, G0, Ṽ, and G0Ṽ are linearly
independent.

If there are sufficient unique network positions, identification is generic on the
basis both of mean and of covariance restrictions. This means that the set of m̃’s and
Ṽ’s for which identification fails is small relative to the entire space of admissible
configurations.

Proposition 6. Suppose that Assumption 1 holds and that the network is connected.

1. The parameters (α, γ, δ) are generically identified from the mean restrictions if there
are at least three unique network positions.

2. The parameters (γ, δ) are generically identified from the covariance restrictions if there
are at least two unique network positions.

To illustrate how the identification conditions operate, assume that the network
satisfies Assumption 2 and that, in addition, ρ2 > 0 andC(xi0 , xj0) = 0 if d(i0, j0) ≥ 3.
Let A

(2)
0 denote the matrix of two-step-away connections, (A

(2)
0 )i0j0 = 1 if d(i0, j0) = 2

and 0 otherwise. Under these assumptions, Ṽ = (σ2
x + σ2

u)I + ρ1σ
2
xA0 + ρ2σ

2
xA

(2)
0 .

Identification is then guaranteed when the diameter of the network is greater than
or equal to 3. Indeed, in this case there exists a pair of network positions i0, j0 such
that d(i0, j0) = 3. For this pair, (G0Ṽ)i0j0 > 0 while (G0)i0j0 = Ṽi0j0 = 0, so that G0Ṽ

cannot be expressed as a linear combination of I, G0 and Ṽ.
Identification may fail, however, in specific cases. Concerning mean restrictions,

the need for at least three distinct positions means that simple network structures
such as complete networks, circles, and stars are excluded. Regarding covariance
restrictions, Theorem 1 shows that identification fails when the matrices I, G0, Ṽ,
and G0Ṽ are linearly dependent. This happens, for instance, when there is no cor-
relation in characteristics across network positions and when the variance of char-
acteristics is homoscedastic, i.e., Ṽ = (σ2

x + σ2
u)I. This structure arises naturally

22



when network formation is independent of individual characteristics. Identifica-
tion from covariance restrictions also fails when the social network takes the form
of a single group of size N0. In that case, Ṽ = (σ2

x + σ2
u)I + (N0 − 1)ρ1σ

2
xG0 and

G0Ṽ = ρ1σ
2
xI + [σ2

x + σ2
u + (N0 − 2)ρ1σ

2
x]G0, such that the linear independence con-

dition is violated.
Finally, Theorem 1 also covers settings where the social network takes the form

of multiple groups of different sizes. Identification fails when ρ1 and σ2
x do not vary

with group size, but holds, generically, otherwise.

Proposition 7. Suppose that Assumption 1 holds and that there are groups of two different
sizesN ′0 andN ′′0 . Then the parameters (γ, δ) are not identified through covariance restrictions
when σ′x = σ′′x and ρ′1 = ρ′′1. If σ′x = σ′′x, the parameters are identified from covariance
restrictions if and only if ρ′1 6= ρ′′1 and (N ′0 − 1)′ρ′1 6= (N ′′0 − 1)ρ′′1. If ρ′1 = ρ′′1 = ρ1, the
parameters are identified if and only if σ′x 6= σ′′x and (1− ρ1)(σ2

x
′′− σ2

x
′) 6= (ρ2

1− ρ1)[(N ′′0 −
1)σ2

x
′′ − (N ′0 − 1)σ2

x
′].

4.2 Extended specification

For the extended specification with network-specific fixed effects, we obtain a similar
result to that of Theorem 1, but applied to demeaned data instead.

Theorem 2. Suppose that Assumption 1 holds and let W 6= 0 be any differencing matrix
for which Wι = 0.

1. The parameters (γ, δ) are identified from the mean restrictions for the W-demeaned
data if and only if vectors Wm̃ and WG0m̃ are linearly independent.

2. Suppose that either γ 6= 0 or δ 6= 0. Then the parameters (γ, δ, σ2
u) are identified from

the covariance restrictions for the W-demeaned data if and only if matrices W, WG0

WṼ, and WG0Ṽ are linearly independent.

The following corollary gives further results for when local differencing is used
to account for network-specific fixed effects.

Corollary 3. Suppose that Assumption 1 holds and let W = Wl = I−G0.

1. The parameters (γ, δ) are identified from the mean restrictions for the Wl-demeaned
data if and only if vectors (I−G0)m̃ and (I−G0)G0m̃ are linearly independent.

2. Suppose that either γ 6= 0 or δ 6= 0. Then the parameters (γ, δ, σ2
u) are identified from

the covariance restrictions for the Wl-demeaned data if and only if matrices I, G0, G2
0,

Ṽ, G0Ṽ, and G2
0Ṽ are linearly independent.
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The first part of this result is similar to that of Theorem 1, apart from the intercept
now being omitted due to the demeaning operation. The second part now imposes
more restrictions, by introducing matrices G2

0 and G2
0Ṽ into the linear independence

condition. This highlights the greater demands imposed on G0 and Ṽ and on their
interplay by the presence of network-specific fixed effects.

However, the following proposition shows that even for the extended model
identification on the basis of the covariance restrictions remains generic.

Proposition 8. Suppose that Assumption 1 holds and that the network is connected. Sup-
pose that either γ 6= 0 or δ 6= 0 and that there are at least two unique network positions.
Then the parameters (γ, δ) are generically identified from the covariance restrictions in the
presence of network fixed effects.

5 Estimation

While the presence of dependencies between characteristics and links may generate
asymptotic bias, it simultaneously offers a valuable source of information that can
be harnessed to develop consistent estimators for the parameters of interest. We in-
troduce straightforward and practical GMM and IV estimators, built upon the mean
and covariance restrictions highlighted in the previous section. Importantly, these
estimators are also applicable to setups with stochastic networks.

While the GMM approach can yield more efficient parameter estimates by utiliz-
ing a broader set of information, it does introduce nonlinearity into the estimation
procedure. This nonlinearity can become a practical challenge when dealing with a
substantial number of perfectly measured covariates, such as network-specific fixed
effects, within the model. In Appendix A.5, we address the treatment of perfectly
measured covariates within a two-step GMM estimator, following the framework of
Erickson and Whited (2002). Importantly, this approach incurs only minimal addi-
tional computational burden. For clarity, we focus on the estimation of the baseline
specification for the remainder of this section.

5.1 GMM estimator

An efficient GMM estimator can be constructed by utilizing the mean and covariance
restrictions, as detailed in Section 4. These moment equations yield a potentially
extensive system of nonlinear equations involving only four unknown parameters,
namely α, γ, δ, and σ2

u.
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Proposition 9. Suppose that Assumption 1 holds. Write the stacked mean and covariance
restrictions for a fixed network G0 as

E(m1
s(θ)) = E(ys)− αι− γE(x̃s)− δE(x̃s) = 0,

E(m2
s(θ)) = vec[M2

s(θ)] = vec
[
C(ys, x̃s)− γ[V(x̃s)− σ2

uI]− δG0[V(x̃s)− σ2
uI]
]

= 0,

where θ = (α, γ, δ, σ2
u). Under standard regularity conditions (Hansen, 1982), the GMM

estimator

θ̂
GMM

= arg min

(
S−1

∑
s

[
m1

s(θ)

m2
s(θ)

])ᵀ

Ω

(
S−1

∑
s

[
m1

s(θ)

m2
s(θ)

])
,

delivers consistent parameter estimates (i.e., plim θ̂
GMM

= θ) for every positive definite
weighting matrix Ω.

Given that our estimator treats networks as the unit of observation, and under the
assumption of independence and identically distributed networks in our framework,
there is no need to adjust standard errors for cross-sectional dependence.

When utilizing solely the mean restrictions in the estimation process, the GMM
estimator simplifies to a closed-form generalized least squares (GLS) estimator. This
GLS estimator operates by using position-specific network-averaged outcomes, and
own and peer characteristics as its inputs.

Corollary 4. The GMM estimator that only uses the mean restrictions, i.e.,

θ̂
GMM

1 = arg min

(
S−1

∑
s

m1
s(θ)

)ᵀ

Ω1

(
S−1

∑
s

m1
s(θ)

)
,

is numerically equivalent to the GLS estimator

θ̂
GLS

=
(
Q

ᵀ
Ω1Q

)−1
Q

ᵀ
Ω1y,

where y = S−1
∑

s ys, Qs = [ι, x̃s, x̃s], and Q = S−1
∑

s Qs. The optimal weighting
matrix is given by Ω∗1 = [V(es) + σ2

u(γ
2I + δ2G0G

ᵀ
0)]
−1.

The GLS estimator simplifies further to the OLS estimator θ̂
OLS

=
(
Q

ᵀ
Q
)−1

Q
ᵀ
y

when the weighting matrix is set to the identity matrix. However, it is important
to note that this estimator is typically not efficient, even under the assumption of
homoscedastic and uncorrelated disturbances. Its inefficiency arises from the pres-
ence of both measurement error and peer effects, introducing an additional source
of dependence between observations. However, if either σ2

u or δ is small, the OLS
estimator approaches efficiency.
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When only covariance restrictions are employed in the estimation process, the
optimal weighting matrix takes the form of Ω∗2 = 1

NsV(e)
[V(xs) + σ2

uI]−1. Notably,
this weighting matrix is proportional to the identity matrix when characteristics ex-
hibit homoscedasticity and are uncorrelated among peers. This covariance structure
arises naturally when network formation is independent of individual characteris-
tics.

In scenarios where the same network structure is observed frequently, such as
experimental setups, the estimators presented in Proposition 9 and Corollary 4 can
be implemented directly. However, in cases involving stochastic networks, it may be
advantageous to aggregate the moment restrictions from different network positions
within networks. This aggregation reduces the number of equations and mitigates
the noise in the moment conditions.16 We provide an illustrative example of such
moment aggregation in our simulation study, detailed in Section 6.

5.2 IV estimator

The parameters of interest can also be recovered by means of an IV estimator. A key
advantage of this approach is its simplicity in estimation. Network fixed effects and
additional perfectly measured characteristics can be included easily.

Due to the presence of measurement error, both own characteristic and average
characteristics of peers are plagued with endogeneity. To see this, substitute xs =

x̃s − us in Expression (1a), which gives that

ys = αι + γx̃s + δx̃s + es − γus − δus,

= αι + γx̃s + δx̃s + ẽs.

The endogeneity problem arises because characteristics x̃ and x̃ are correlated with
the composite error term ẽ: i.e., C(x̃, ẽ) 6= 0 and C(x̃, ẽ) 6= 0 if γ, δ 6= 0.

Since there are two endogenous regressors, at least two instrumental variables
z1 and z2 are needed to obtain consistent estimates for the parameters of interest.
Besides being uncorrelated with the composite error term, these instruments should

also satisfy the standard rank condition det

[
C(z1, x̃) C(z1, x̃)

C(z2, x̃) C(z2, x̃)

]
6= 0. Under these

conditions, the IV estimator[
γ̂IV

δ̂IV

]
=
([

Wbz1 Wbz2

]ᵀ [
Wbx̃ Wbx̃

])−1 [
Wbz1 Wbz2

]ᵀ
Wby,

16For general networks, determining all unique network positions can be computationally demand-
ing. Additionally, if a unique network position appears only infrequently in the sample, the associ-
ated moment restrictions can be noisy, so that aggregation across positions is recommended.
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provides consistent estimates for the parameters of interest.
We explore two approaches to constructing relevant and valid instruments from

within the model: using network-lagged characteristics and network features. These in-
struments’ relevance relies on interdependence between characteristics and links.
Alternatively, when external information is at hand, such as repeated measurements
of the characteristics, this information can be used to generate supplementary in-
struments. These three categories of instruments — network-lagged characteristics,
network features, and external data — can be adopted interchangeably, provided
that the rank condition is met.

Network-lagged characteristics If the network is sufficiently sparse, one potential
source of instrumental variables is network-lagged characteristics. The relevance
and validity of these instruments relies on the fact that individual characteristics are
correlated across the network, whereas measurement error is not. If characteristics
are correlated with links, the characteristics of peers at distances two or beyond can
be used as instruments. The use of network-lagged characteristics is reminiscent of
Griliches and Hausman (1986), who employ time-lagged observations in the context
of the linear panel data model.

Let A(t) denote the zero-ones matrix that indicates whether a pair is at distance t
and let G(t) denote its row-normalized version. The set of instruments

{
G(t)x̃

}
t=2,3,...,T

is valid under Assumption 1 as

C
(
(G(t)x̃)i, ẽi

)
= C

(
(G(t)x̃)i, ei

)
− γC

(
(G(t)x̃)i, ui

)
− δC

(
(G(t)x̃)i, ui

)
= 0,

for t = 2, 3, . . . , T . Under Assumption 3, the strength of these instruments with
respect to the own characteristic is equal to C

(
(G(t)x̃)i, x̃i

)
= ρtσ

2
x.

Alternatively, the following result can be used to exploit the dependence of in-
dividual characteristics across the network through a differencing procedure. By
considering differencing matrices of a specific class, the dependency between the
instrument and the composite error term, which drives endogeneity, is cancelled
out.

Proposition 10. Suppose that Assumption 1 holds. For every differencing matrix Wz 6= 0,
such that Wzι = 0 and diag(Wz) = 0, variable Wzx̃ is a valid instrument.

A prime example is the differencing matrix Wz = G − G(2). The resulting in-
strument (G−G(2))x̃ leverages differences in correlations one and two steps away.
For example, for the equi-correlational model, we obtain C

(
x̃i, (G−G(2))x̃)i

)
=

(ρ1 − ρ2)σ2
x. That is, the strength of this instrument with respect to own character-

istic is determined by the difference between correlations one and two steps away.
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Intuitively, this strategy exploits discontinuities in the correlation of characteristics
as a function of network distance.

Network features Another potential source of instruments is provided by the fea-
tures of the network. First consider those that are related to mean restrictions. For
instance, when individuals who have large values for the characteristic also have
more connections, degree constitutes a relevant and valid instrument as C(d, x̃) 6= 0

and C(d, ẽ) = 0. The same holds for other network features, like local clustering,
that might be correlated with the (true) characteristic.

Such features of the social network can also be used to construct instruments that
implicitly exploit the covariance restrictions.

Proposition 11. Suppose that Assumption 1 holds. Let ci(G) be a network characteristic.
Instruments (i) ci, (ii) (ci − E[c])x̃i, and (iii) di(ci − E[c])x̃i are valid. They are relevant
when

• C(c, x) 6= 0 or C(c, x) 6= 0,

• C(c,V(x | c)) 6= 0 or C(c,C(x, x | c)) 6= 0,

• C(c, dV(x | c)) 6= 0 or C(c, dC(x, x | c)) 6= 0,

respectively.

From Proposition 11 it is apparent that a network characteristic that is not a rel-
evant instrument in the traditional sense (i.e., C(c, x) = C(c, x) = 0) might still be
useful if it is correlated with the conditional variance of the individual characteristic
(i.e., C(c,V(x | c)) 6= 0) or with conditional homophily (i.e., C(c,C(x, x | c)) 6= 0).
An instrument that is correlated with the degree-corrected conditional variance of
the peer characteristic (i.e., C(c, dV(x | c)) 6= 0) is also relevant.17 For example,
Lemma 1 suggests that local clustering induces heteroscedasticity in average peer
characteristics, as it affects variance V(x) across positions.

Finally, although network-lagged characteristics and network features provide
appealing and intuitive instruments, they might also exhibit weak first stages. It is
therefore advisable to test for the presence of weak instruments.

6 Simulation

We illustrate our main results for the expansion bias numerically through a Monte
Carlo exercise. Our simulations suggest that even in settings where Assumption 2

17Degree correction ensures that the instrument picks up conditional heteroscedasticity different
from that operating through peer averaging (e.g., see Expression (6)).
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is not satisfied, our expression for the theoretical bias in Proposition 3 provides an
adequate description of the actual bias. They also show that our GMM and IV esti-
mators may behave well in finite samples.

6.1 Setup

We consider a setting with a large number of small stochastic networks. In each
simulation, S networks are generated at random by means of a dyadic model of
network formation. We fix the number of individuals within every network atNs =

20, as this corresponds to a common setting in empirical applications. We repeat
this simulation procedure R = 200 times.

For every individual i within a network s, we draw characteristics at random. In
particular, we assume that

xsi = ξs + ξsi,

where ξs ∼ Normal(10, 1) and ξsi ∼ Normal(0, 2).
Links between individuals within a given network are assumed to be formed

through the undirected dyadic specification

asij = I [µ− ν|xsi − xsj|+ fi + fj ≥ wsij] , (10)

where µ is an intercept that controls the overall propensity to form links and ν is
a parameter that controls homophily. A large value of ν implies that individuals
with dissimilar characteristics tend to link less often on average. We further assume
that the individual-specific and pair-specific link shifters are distributed fi, fj ∼
Normal(0, 1) and wsij ∼ Logistic(0, 1), respectively. The inclusion of individual-
specific random effects fi and fj allows for more realistic variation in degree distri-
bution. Note that the probability of a link being formed amounts to

Pr[asij = 1 | xsi, xsj, fi, fj] =
1

1 + exp(−(µ− ν|xsi − xsj|+ fi + fj))
.

If an individual remains isolated, we assign her a random peer.
Individuals’ outcomes are generated by setting the true peer effect to zero (i.e.,

δ = 0) and the true own effect to one (i.e., γ = 1). In particular, we specify that

ysi = 1 + xsi + esi,

where esi ∼ Normal(0, 1). Measurement error is distributed usi ∼ Normal(0, 0.3),
which implies that the noise-to-signal ratio amounts to φ = 0.1.
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6.2 Results

Expansion bias. We first assess how the asymptotic bias varies with µ and ν, the
parameters that determine network formation through the dyadic specification. Ta-
ble 1 reports the biases for peer effect parameter δ using the non-demeaned as well as
the globally- and locally- demeaned OLS estimators. Notice that in our setup, each
of these three estimators are consistent in the absence of measurement error. Over-
all, we find that the expansion bias in the non-demeaned estimator is smaller than
that in the globally- and locally- demeaned estimators, the latter two being rather
similar.

To assess the applicability of our theoretical expression for the bias in Proposi-
tion 3, we compare it with the simulated bias. In Figure 1, we plot for each of the
30 possible data-generating processes in Table 1 the simulated versus the theoretical
asymptotic bias in the baseline OLS estimates for δ.18 The biases for the majority of
the specifications are clustered around the 45-degree line, which suggests that our
theoretical approximation provides an adequate description of the asymptotic bias,
even when Assumption 2 is not formally met.

Estimation. We now assess the finite sample performance of the GMM and IV
estimators proposed in Section 5. Our results suggest that even the parsimonious
dyadic model in Expression (10) generates sufficient interdependence between char-
acteristics and links to recover the parameters of interest. For simplicity, we set
(µ, ν) = (1, 1), which corresponds to moderate values.

As the setup entails stochastic networks, to operationalize the GMM estimator,
we build moment conditions by aggregating the mean and covariance restrictions
across network positions. This reduces the number of moment equations and in-
creases their precision. In particular, we construct the moments

m1
s(θ) = N−1

s

[
ιᵀm1

s(θ)

ιᵀGsm
1
s(θ)

]
,

m2
s(θ) = N−2

s


(

I4 ⊗ ιᵀ

I4 ⊗ ιᵀGs

)
M

2(0)
s (θ)

M
2(1)
s (θ)

M
2(2)
s (θ)

M
2(>2)
s (θ)

 ι


where M

2(d)
s = A

(d)
s �M2

s selects the covariance restrictions for pairs at distance d.
Together, they yield a system of ten equations and four unknowns. The estimates are
obtained by means of two-step GMM. To operationalize the IV estimator, we choose

18To operationalize Proposition 3, we plug in the empirical counterparts to statistics ρ1, ρ2, h0, and
h1.
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Table 1: Bias in the OLS estimates of δ

µ ν

0.0 0.4 0.8 1.2 1.6 2.0
Non-demeaned

-2 0.05 0.07 0.07 0.07 0.07 0.06
-1 0.08 0.10 0.10 0.11 0.12 0.10
0 0.07 0.12 0.16 0.18 0.15 0.14
1 0.11 0.16 0.21 0.25 0.23 0.22
2 0.11 0.13 0.18 0.28 0.31 0.29

Globally-demeaned

-2 -0.02 0.04 0.04 0.05 0.04 0.03
-1 0.03 0.08 0.09 0.11 0.10 0.07
0 -0.05 0.13 0.19 0.19 0.16 0.12
1 -0.02 0.24 0.34 0.32 0.28 0.22
2 0.07 0.38 0.45 0.54 0.46 0.39

Locally-demeaned

-2 -0.03 0.04 0.02 0.05 0.05 0.03
-1 0.05 0.10 0.11 0.11 0.10 0.05
0 -0.07 0.11 0.18 0.18 0.13 0.11
1 -0.02 0.22 0.34 0.30 0.25 0.14
2 0.09 0.39 0.42 0.52 0.38 0.33

Results for parameter values (γ, δ) = (1, 0).

Figure 1: Simulated versus theoretical bias in the OLS estimates of δ
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two straightforward instruments based on lagged characteristics: z1 = G(2)x̃ and
z2 = (G−G(2))x̃.

Figure 2 displays the empirical distribution of the OLS, IV, and GMM estimators
for peer effect parameter δ. First consider the results for samples containing S = 250

networks in Figure 2a. As before, the OLS estimates exhibit an expansion bias with
a mean value of 0.2245 (indicated by a dotted vertical line) and a standard deviation
of 0.0181. The IV and GMM estimates, however, are approximately centered around
the true value, with a mean value of 0.0032 and 0.0013 (again indicated by a dotted
vertical line) and a standard deviation of 0.0546 and 0.0403, respectively. Although
the sample variation of the IV and GMM estimators is larger than that of the OLS es-
timator, both estimators are still quite precise. The GMM estimator outperforms the
IV estimator, which is not surprising since the former uses more moment conditions
and is overidentified.

As expected, the variation for samples with S = 500 networks (displayed in
Figure 2b) is even smaller. For the OLS, IV, and GMM estimates we obtain standard
deviations of 0.0137, 0.0400, and 0.0265, respectively.

7 Concluding remarks

This work addressed errors-in-variables in the linear-in-means model of social inter-
actions. Due to the special structure of this model, the coefficient on the peer effect
exhibits an asymptotic expansion bias in the presence of homophily. Homophily is
a widely recognized phenomenon in social networks, suggesting that false positives
could be a first-order concern in empirical studies. We demonstrate how the mag-
nitude of this bias critically depends on network statistics, such as average inverse
degree and clustering. While the interdependence between individual character-
istics and network formation contributes to this bias, it also offers an opening for
consistent estimation of the parameters of interest, eliminating the need for exter-
nal information. We propose GMM and IV estimators that are straightforward to
implement. To illustrate the efficacy of these methods, we conduct a Monte Carlo
simulation.

This paper arguably constitutes a necessary first step toward a general analysis
of measurement error and peer effects in networks. Looking ahead, we envision at
least four promising avenues for future research. First, and given that the model
is significantly overidentified, we believe that identification may be robust to relax-
ing Assumption 1. It would be interesting to extend our analysis to setups where
the variance covariance structure of measurement errors may depend on network
positions.

Second, it would be worth extending our analysis to settings where measure-
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(a) Sample size S = 250

(b) Sample size S = 500

Figure 2: Empirical distribution of the OLS, IV, and GMM estimates of δ
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ment error is non-classical. Recent research by Balestra, Eugster, and Puljic (2023)
has shown that when a binary characteristic is misclassified, an expansion bias can
even arise under random group formation.19 We hypothesize that (i) this addi-
tional expansion bias will emerge in a network setting as well and that (ii) under
non-random assignment, the usual expansion bias will reappear with qualitatively
similar features to the bias studied here.

Third, extending our analysis to models that accommodate endogenous peer ef-
fects will provide valuable insights. We conjecture that when endogenous peer ef-
fects are included, homophily will remain an important driver of inflated peer effects
estimates. Moreover, precursory results by de Paula (2017) suggest that covariance
restrictions might continue to play a key role in the identification and estimation of
this class of models.

Fourth, an exploration of the interplay between mismeasured characteristics and
mismeasured links could contribute to a deeper and fuller understanding of the
impact of measurement error on social interaction modeling. For instance, if ho-
mophily is correlated with friendship intensity, surveys that only sample a few best
friends might deliver biased estimates of homophily. This, in turn, may interact with
expansion bias due to mismeasured characteristics.

19This additional expansion bias arises from the correlation between the average peer characteristic
and the misclassification error in the individual characteristic.
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Online Appendix
Measurement Error and Peer Effects in Networks

A Additional results

A.1 Reduced-form estimator of peer effects

In a model with endogenous peer effects, Griffith (2022a) and Griffith and Kim
(2023) study the impact of censored links on the so-called reduced-form estimator of
peer effects. We show that our results in Section 3 for the asymptotic bias due to
errors-in-variables are also applicable to this estimator.

Let the baseline linear-in-means model with an endogenous peer effect be de-
noted by

ys = αι + βys + γxs + δxs + es,

where ys = Gsys and |β| < 1. Griffith (2022a) and Griffith and Kim (2023) define
the reduced-form estimator of peer effects asα̂

OLS
RF

γ̂OLSRF

δ̂OLSRF

 = ([ι,x,x]ᵀ[ι,x,x])−1 [ι,x,x]ᵀy,

which has probability limit αRFγRF

δRF

 = plim

α̂
OLS
RF

γ̂OLSRF

δ̂OLSRF

 .
These probability limits are generally a complex function of characteristics, links,
and model parameters. Nevertheless, the reduced-form estimates allow to detect
the presence of peer effects, be it exogenous or endogenous: i.e., if δRF 6= 0, either
β 6= 0 or δ 6= 0.

Importantly for our purposes, this linear projection yields the observationally
equivalent model

ys = αRF ι + γRFxs + δRFxs + vs

where the error satisfies E[vᵀ
sxs] = 0 and E[vᵀ

sxs] = 0 by construction. Since this
observationally equivalent model is similar to our baseline specification in Expres-
sion (1), the asymptotic bias due to errors-in-variables in these reduced-form esti-
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mates behaves as usual:

plim
[
γ̂OLSRF

δ̂OLSRF

]
= plim

([
Wbx̃ Wbx̃

]ᵀ [
Wbx̃ Wbx̃

])−1 [
Wbx̃ Wbx̃

]ᵀ
Wby

= (S + Σ)−1S

[
γRF

δRF

]
.

(11)

Note, however, that the identification and estimation results in Sections 4 and 5
are not valid for the reduced-form estimator without significant adaptations. This
is because the error in the observationally equivalent model is a complex function
of underlying primitives and therefore E(vsi | xs,Gs,us) 6= 0 in general.

A.2 Asymptotic bias for groups with leave-in means

We provide expressions for the asymptotic bias in the case that peer effects are de-
fined on the basis as leave-in means. In this setting, we have that

Σ = σ2
u

[
1 N−1

0

N−1
0 N−1

0

]
.

Similar to Proposition 1, one can show that

plim δ̂OLS =
C(x, x)−N−1

0 V(x)

∆ + (N−1
0 V(x) + V(x)− 2N−1

0 C(x, x))σ2
u + (N−2

0 (N0 − 1))σ4
u

σ2
uγ,

if δ = 0. The counterparts to Lemma 1 and Corollary 2 are as follows.

Lemma A.1. Suppose that Assumption 2 holds. If the social graph takes the form of a group,
then we have that

C(x, x) =

(
1

N0

+
N0 − 1

N0

ρ1

)
σ2
x,

V(x) =

(
1

N0

+
N0 − 1

N0

ρ1

)
σ2
x.

Corollary A.1. Suppose that Assumptions 1 and 2 hold and suppose that there is no peer
effect, i.e., δ = 0. If the social graph takes the form of a group, then δ̂OLS has the asymptotic
bias

plim δ̂OLS =
ρ1φ

(1 + φ)( 1
N0

+ (1− 2
N0

)ρ1)− N0−1
N0

ρ2
1 + 1

N0
φ+ 1

N0
φ2
γ.
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A.3 Convergence of the asymptotic bias in the baseline and glob-
ally demeaned estimates

From the results in Section B.6, we know that

Σg = Σ−N−1
0

[
σ2
u σ2

u

σ2
u σ2

uN
−1
0 (ιᵀGGᵀι)

]
,

Sg = S−N−1
0

[
C(xsi, (Jx)si) C(xsi, (Jx)si)

C(xsi, (Jx)si) C(xsi, (Jx)si)

]
.

If the degree distribution is stable as N0 grows large, we have that

N−1
0 (ιᵀGGᵀι) = N−1

0 (Gᵀι)ᵀGᵀι

≤ N−1
0 (Aι)ᵀAι

= N−1
0 dᵀd,

converges to a constant at most. In addition, if one assumes that

lim
N0→∞

N−1
0 C(xsi, (Jx)si) = 0,

lim
N0→∞

N−1
0 C(xsi, (Jx)si) = 0,

lim
N0→∞

N−1
0 C(xsi, (Jx)si) = 0,

(12)

by the sum and product rule for limits, it holds that

lim
N0→∞

plim
[
γ̂OLSg

δ̂OLSg

]
= lim

N0→∞
(Sg + Σg)

−1Sg

[
γ

δ

]

= (S + Σ)−1S

[
γ

δ

]

= plim
[
γ̂OLS

δ̂OLS

]
.

Intuitively, the conditions in Expression (12) hold if correlations between charac-
teristics decrease with network distance and if the average distance between nodes
increases with N0.

A.4 Asymptotic bias for strongly regular graphs

We now consider the global transformation’s asymptotic bias for the class of strongly
regular graphs. The following lemma will be useful to obtain a closed-form expres-
sion for the bias.
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Lemma A.2. Suppose that Assumption 3 holds and suppose the graph is strongly regular
with parameters (N0, d, λ). Then we have that

h0 =
1

d
,

h1 =
λ

d
,

h2 = 1− λ+ 1

d
,

and

m10 = m20 = m30 =
1

N0

,

m11 = m21 = m31 =
d

N0

,

m12 = m22 = m32 = 1− d+ 1

N0

,

for the globally demeaned differences (see Lemma A.3).

Using this lemma we can state the expression for the bias.

Proposition A.1. Suppose that Assumptions 1 and 3 hold and that there is no peer effect,
i.e., δ = 0. If the graph is strongly regular, σ2

u ≈ 0, and N0 → ∞, the asymptotic bias of
δ̂OLSg is

plim δ̂OLSg ≈ ρ1 − ρ2

h0(1− ρ2)2 + h1(ρ1 − ρ2)(1− ρ2)− (ρ1 − ρ2)2
σ2
uγ.

A.5 GMM estimation with perfectly measured covariates

In this section, we discuss how to allow for a large number of additional perfectly
measured covariates in GMM estimation. A two-step procedure similar to the one
developed by Erickson and Whited (2002) provides a computationally attractive
approach to estimate the parameters of interest. The two-step nature of this ap-
proach reduces the number of parameters that enter the nonlinear objective func-
tion, greatly facilitating estimation.

We consider the specification

ys = Fsα + γxs + δxs + es, (13)

where Fs denotes a matrix that contains these perfectly measured covariates (e.g.,
network fixed effects). The disturbance is assumed to satisfy the conditional mean
independence condition E(es |,Fs,xs,Gs,us) = 0. As before, we assume that the
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conditional mean, variance and covariance of the measurement error do not depend
on any of the other variables in the model, nor on the structure of the social network.

Assumption A.1. The measurement errors satisfy:

E(usi | Fs,xs,Gs, es) = 0,

E(u2
si | Fs,xs,Gs, es) = σ2

u,

E(usiusj | Fs,xs,Gs, es) = 0.

The procedure makes use of the following two consecutive steps. In the first
step, we partial out the perfectly measured variables by the use of auxiliary OLS
regressions. We regress outcomes, own characteristics, and peer characteristics on
the perfectly measured covariates and rewrite the model in terms of the associated
residuals. Formally, the residuals of the OLS regression of a given vector bs on the
columns of Fs take the form Psbs, where Ps = I − Fs(F

ᵀ
sFs)

−1Fᵀ
s is an annihilator

matrix. Premultiplying all variables in Expression (13) by this annihilator matrix,
we obtain

Psys = γPsxs + δPsxs + Pses, (14)

which does not contain the possibly high-dimensional parameter vector α anymore.
In the second step, we perform GMM estimation on the basis of the mean and co-

variance restrictions of the transformed model in Expression (14). Similar to Equa-
tions (8) and (9) for the baseline model, for a fixed network G0 it holds that

E(Psys) = γE(Psx̃s) + δE(Psx̃s),

C(Psys,Psx̃s) = γ
[
V(Psx̃s)− σ2

uE(Ps)
]

+ δ
[
C(Psx̃s,Psx̃s)− σ2

uE(PsG0Ps)
]
.

The second and fourth terms in the convariance restrictions now depend on Ps to
account for the fact that the data is transformed. Together, these restrictions provide
a potentially large system of equations in only three unknowns (i.e., γ, δ, and σ2

u).
The following proposition formalizes the asymptotic properties of this two-step

GMM estimator.

Proposition A.2. Suppose that Assumption A.1 holds. Write the stacked mean and covari-
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ance restrictions for a fixed network G0 as

E(m1
p,s(θ)) = E(Psys)− γE(Psx̃s)− δE(Psx̃s)

= 0,

E(m2
p,s(θ)) = vec

[
C(Psys,Psx̃s)− γ

[
V(Psx̃s)− σ2

uE(Ps)
]
− δ
[
C(Psx̃s,Psx̃s)− σ2

uE(PsG0Ps)
]]

= 0,

where θ = (γ, δ, σ2
u). Under standard regularity conditions (Erickson & Whited, 2002), the

GMM estimator

θ̂
GMM

p = arg min

(
S−1

∑
s

[
m1

p,s(θ)

m2
p,s(θ)

])ᵀ

Ω

(
S−1

∑
s

[
m1

p,s(θ)

m2
p,s(θ)

])
,

delivers consistent parameter estimates (i.e., plim θ̂
GMM

p = θ) for every positive definite
weighting matrix Ω. Asymptotically, the estimator is normally distributed.

A.6 Additional results for the extended model

Lemma A.3. Suppose that Assumption 3 holds. Then we have that

Vg(xsi) = 1−
T∑
t=0

m1tρt,

Cg(xsi, xsi) = ρ1 −
T∑
t=0

m2tρt,

Vg(xsi) =
2∑
t=0

htρt −
T∑
t=0

m3tρt,

for the globally demeaned differences, and

Vl(xsi) = 1 +
2∑
t=0

htρt − 2ρ1,

Cl(xsi, xsi) = ρ1 −
2∑
t=0

(n1t − ht)ρt +
3∑
t=0

n2tρt,

Vl(xsi) =
2∑
t=0

htρt +
4∑
t=0

n3tρt − 2
3∑
t=0

n2tρt,
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for the locally demeaned differences, where

m1t = N−2
0 ιᵀA

(t)
0 ι,

m2t = N−2
0 ιᵀG0A

(t)
0 ι,

m3t = N−2
0 ιᵀG0A

(t)
0 Gᵀ

0ι,

n1t = N−1
0 trace(G2

0A
(t)
0 ),

n2t = N−1
0 trace(Gᵀ

0G
2
0A

(t)
0 ),

n3t = N−1
0 trace((Gᵀ

0)2G2
0A

(t)
0 ).

B Proofs for Section 3

B.1 Proof of Propositions 1 and 2

Expanding the expression in (4), using (6), we get that

plim
[
γ̂OLS

δ̂OLS

]
=

1

D

[
∆ + h0V(x)σ2

u h0C(x, x)σ2
u

C(x, x)σ2
u ∆ + V(x)σ2

u

][
γ

δ

]
,

where

D = ∆ + h0V(x)σ2
u + V(x)σ2

u + h0σ
4
u,

∆ = det(S) = V(x)V(x)− C(x, x)2.

In particular, when there is no peer effect (i.e., δ = 0), the expressions simplify
to

plim γ̂OLS =
∆ + h0V(x)σ2

u

∆ + h0V(x)σ2
u + V(x)σ2

u + h0σ4
u

γ,

plim δ̂OLS =
C(x, x)σ2

u

∆ + h0V(x)σ2
u + V(x)σ2

u + h0σ4
u

γ.

Since the variance-covariance matrix S is positive semi-definite, we have that ∆ ≥ 0,
such that there will be an attenuation bias on γ̂OLS and an expansion bias on δ̂OLS if
C(x, x) > 0. Taking the partial derivative of the expansion bias with respect to σ2

u,
we find that

∂(plim δ̂OLS/γ)

∂σ2
u

=
C(x, x)(∆− h0σ

4
u)

(∆ + h0V(x)σ2
u + V(x)σ2

u + h0σ4
u)

2 .

If C(x, x) > 0, the expansion bias first increases and then decreases when measure-
ment error increases. When σ2

u = 0 or +∞ the expansion bias is equal to zero. It is
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maximal where
∂(plim δ̂OLS/γ)

∂σ2
u

= 0,

which gives
arg max

σ2
u

{
plim δ̂OLS/γ

}
=

√
h−1

0 ∆.

The maximum takes the value

max
σ2
u

{
plim δ̂OLS/γ

}
=

C(x, x)

2
√
h0∆ + V(x)

.

B.2 Proof of Corollary 1

For σ2
u ≈ 0, we can approximate (S + Σ)−1S ≈ I− S−1 ∂Σ

∂σ2
u
σ2
u. Therefore,

plim
[
γ̂OLS

δ̂OLS

]
≈
(

I− S−1 ∂Σ

∂σ2
u

σ2
u

)[
γ

δ

]

=

([
1 0

0 1

]
− σ2

u

∆

[
V(x) −C(x, x)

−C(x, x) V(x)

][
1 0

0 h0

])[
γ

δ

]

=

[
1− V(x)

∆
σ2
u

h0C(x,x)
∆

σ2
u

C(x,x)
∆

σ2
u 1− h0V(x)

∆
σ2
u

][
γ

δ

]
.

B.3 Proof of Lemma 1

By Assumption 2, E(x) = E(x) = E((G2x)si) = µx, and V(x) = σ2
x . For the co-

variance of the own characteristic with the average characteristics of peers, we have
that

C(x, x) = E(xsixsi)− E(xsi)E(xsi)

= N−1
0

(∑
i0

E(xi0(G0x)i0)

)
− µ2

x

= N−1
0

(∑
i0,j0

gi0,j0E(xi0xj0)

)
− µ2

x

= N−1
0

(∑
i0,j0

gi0,j0
(
C(xi0 , xj0) + µ2

x

))
− µ2

x

= ρ1σ
2
x.
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For the variance of average characteristics of peers, we have that

V(x) = E(x2
si)− E(xsi)

2

= N−1
0

∑
i0

E((G0x)2
i0

)− µ2
x

= N−1
0

∑
i0,j0,k0

gi0,j0gi0,k0E(xj0xk0)− µ2
x

= N−1
0

∑
i0,j0,k0

gk0,i0gk0,j0
[
C(xi0 , xj0) + µ2

x

]
− µ2

x

=
∑
i0,j0

h(i0, j0)C(xi0 , xj0),

where h(i0, j0) = N−1
0

∑
k0
gk0i0gk0j0 and

∑
i0,j0

h(i0, j0) = 1. Note that h(i0, j0) = 0 if
individuals at positions i0 and j0 do not have a common friend. Therefore, i0 and j0

can only be at distances zero, one, or two. As such, we can write

V(x) =
∑
i0,j0

h(i0, j0)Cs(xi0 , xj0)

=
∑

i0,j0:d(i0,j0)=0

h(i0, j0)σ2
x +

∑
i0,j0:d(i0,j0)=1

h(i0, j0)κ1 +
∑

i0,j0:d(i0,j0)=2

h(i0, j0)κ2

= N−1
0 [trace(Gᵀ

0G0) + trace(Gᵀ
0F0G0)ρ1 + (1− trace(Gᵀ

0(I + F0)G0))ρ2]σ2
x

= (h0 + h1ρ1 + h2ρ2)σ2
x.

B.4 Proof of Proposition 3

From the proof of Proposition 1, we know that for a fixed social network

plim δ̂OLS =
C(x, x)σ2

u

V(x)V(x)− C(x, x)2 + h0V(x)σ2
u + V(x)σ2

u + h0σ4
u

γ.

Substituting the results from Lemma 1 in this equation immediately gives

δ̂OLSp =
ρ1φ

(1 + φ)(h0 + h1ρ1 + h2ρ2)− ρ2
1 + h0φ+ h0φ2

γ

=
ρ1φ

(1 + φ)(h0 + h1ρ1 + (1− h0 − h1)ρ2)− ρ2
1 + h0φ+ h0φ2

γ,

where φ = σ2
u

σ2
x

is the noise-to-signal ratio.
Let D = (1 + φ)(h0 + h1ρ1 + h2ρ2)− ρ2

1 + h0φ+ h0φ
2 ≥ 0 denote the denominator.

For claim (i), we have that

∂ ρ1φ
D

∂ρ1

=
φ(D − (1 + φ)hs1ρ1 + 2ρ2

1)

D2
,
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by the quotient rule. The sign of this expression depends on the sign of

D − (1 + φ)h1ρ1 + 2ρ2
1 = (1 + φ)(h0 + φh0 + (1− h0 − h1)ρ2) + ρ2

1,

which is certainly positive if

ρ2 ≥ −
(1 + φ)h0

1− h0 − h1

.

For claim (ii), we have that

∂ ρ1φ
D

∂ρ2

=
−φ(1 + φ)(1− h0 − h1)ρ1

D2
,

sign
(
∂ ρ1φ

D

∂ρ2

)
= −sign(ρ1) ≤ 0,

where the second equality follows from the fact that for networks (1− h0 − h1) > 0.
For claim (iii), we have that

∂ ρ1φ
D

∂h0

=
−φ((1 + φ)(1− ρ2) + φ+ φ2)ρ1

D2
,

sign
(
∂ ρ1φ

D

∂h0

)
= −sign(ρ1) ≤ 0.

Finally, for claim (iv), we have that

∂ ρ1φ
D

∂h1

=
−φ(1 + φ)(ρ1 − ρ2)ρ1

D2
,

sign
(
∂ ρ1φ

D

∂h1

)
= −sign(ρ1 − ρ2)sign(ρ1) ≤ 0.

B.5 Proof of Corollary 2

The proof is analogous to that of Proposition 3 and is therefore omitted.

B.6 Proof of Proposition 4

After applying the differencing matrix Ww for w = {g, l} to x and x, the expressions
for the variance-covariance matrices of the regressors and the measurement error
become

Sw =

[
Vw(xsi) Cw(xsi, xsi)

Cw(xsi, xsi) Vw(xsi)

]
, Σw =

[
Vw(usi) Cw(usi, usi)

Cw(usi, usi) Vw(usi)

]
.
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Straightforward calculations give the following expression for the asymptotic bias
when δ = 0,

plim δ̂OLSw = det(Sw + Σw)−1[Vw(usi)Cw(xsi, xsi)− Cw(usi, usi)Vw(xsi)]γ, (15)

which is strictly positive if Cw(xsi, xsi) > 0 and Cw(usi, usi) < 0 for w = {g, l}.

B.6.1 Global transformation

We first consider the global transformation. Let Q = IS ⊗ JN0 such that Wg =

(IN − N−1
0 Q). Note that Q is symmetric and that Q2 = N0Q. For the variance-

covariance matrix Σg, we therefore find that

Σg = Σ−N−1
0

[
C(usi, (Qu)si) C(usi, (Qu)si)

C(usi, (Qu)si) C(usi, (Qu)si)

]
.

We can expand the covariances C(usi, (Qu)si), C(usi, (Qu)si), and C(usi, (Qu)si) as

C(usi, (Qu)si) = N−1
0

∑
i0

E(ui0(Qu)i0)

= N−1
0

∑
i0,j0

E (ui0uj0)

= N−1
0

∑
i0

E
(
u2
i0

)
= N0m10σ

2
u

= σ2
u,

C(usi, (Qu)si) = N−1
0

∑
i0

E(ui0(Qu)i0)

= N−1
0

∑
i0,j0,k0

gj0,k0E (ui0uk0)

= N−1
0

∑
i0,j0

gj0,i0E(u2
i0

)

= N0m20σ
2
u

= σ2
u,
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C(usi, (Qu)si) = N−1
0

∑
i0

E(ui0(Qu)i0)

= N−1
0

∑
i0,j0,k0,l0

gi0,j0gk0,l0E (uj0ul0)

= N−1
0

∑
i0,j0,k0

gi0,j0gk0,j0E
(
u2
j0

)
= N−1

0 (ιᵀGGᵀι)σ2
u

= N0m30σ
2
u.

Putting things together, we have that

Σg = σ2
u

[
1−m10 −m20

−m20 h0 −m30

]
.

Since Cg(usi, usi) = −N−1
0 < 0, we have that the global transformation entails an

expansion bias if Cg(xsi, xsi) > 0.
Moreover, as

plim δ̂OLSg =
[(1−m10)Cg(xsi, xsi) +m20Vg(xsi)]σ

2
u

[(1−m10)(h0 −m30)−m2
20]σ4

u +O(σ2
u)
γ,

it follows directly from L’Hôpital’s rule that limσ2
u→∞ plim δ̂OLSg = 0.20

The approximation of the expansion bias for σ2
u ≈ 0 follows directly from the

first-order Taylor linearization of Expression (15) around σ2
u = 0.

B.6.2 Local transformation

We now consider the local transformation for which Wl = (IN−G). For the variance-
covariance matrix Σl, we have that

Σl = Σ

+

[
V(usi) −C(usi, (G

2u)si) + C(usi, (G
2u)si)− V(usi)

−C(usi, (G
2u)si) + C(usi, (G

2u)si)− V(usi) V((G2u)si)− 2C(usi, (G
2u)si)

]
.

20We let O(·) denote Landau’s Big O.

A12



We can expand the covariances C(usi, (G
2u)si) and C(usi, (G

2u)si), and the variance
V((G2u)si) as

C(usi, (G
2u)si) = N−1

0

∑
i0

E(ui0(G
2u)i0)

= N−1
0

∑
i0,j0,k0

gi0j0gj0k0E(ui0uk0)

= N−1
0

∑
i0,j0

gi0j0gj0i0E(u2
i0

)

= N−1
0 trace(G2)σ2

u

= n10σ
2
u,

C(usi, (G
2u)si) = N−1

0

∑
i0

E(ui0(G
2u)i0)

= N−1
0

∑
i0,j0,k0,l0

gi0j0gi0k0gk0l0E(uj0ul0)

= N−1
0

∑
i0,j0,k0

gi0j0gi0k0gk0j0E(u2
j0

)

= N−1
0 trace(GᵀG2)σ2

u

= n20σ
2
u,

and

V((G2u)si) = N−1
0

∑
i0

E((G2u)2
i0

)

= N−1
0

∑
i0,j0,k0,l0,m0

gi0j0gj0k0gi0l0gl0m0E(xk0xm0)

= N−1
0

∑
i0,j0,k0,l0

gi0j0gj0k0gi0l0gl0k0E(x2
k0

)

= N−1
0 trace((G2)ᵀG2)σ2

u

= n30σ
2
u.

Putting thing together, we have that

Σl = σ2
u

[
1 + h0 −n10 + n20 − h0

−n10 + n20 − h0 h0 + n30 − 2n20

]
.

If Cl(usi, usi) = N−1
0 (−trace(G2) + trace(GᵀG2) − trace(GᵀG)) < 0, we have that

the local transformation entails an expansion bias if Cl(xsi, xsi) > 0. This is true for
every network because trace(G2) ≥ trace(GᵀG2) always holds.21

21This inequality relies on three well-known results from linear algebra. Let λ(A) = {λi}i=1,2,...,N0

denote the set of eigenvalues of the N0 × N0 matrix A. Then (i) trace(A) =
∑
i λi; (ii) λ(A) =
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Moreover, as

plim δ̂OLSl =
[(1 + h0)Cl(xsi, xsi)− (−n10 + n20 − h0)Vl(xsi)]σ

2
u

[(1 + h0)(h0 + n30 − 2n20)− (−n10 + n20 − h0)2]σ4
u +O(σ2

u)
γ,

it follows by L’Hôpital’s rule that limσ2
u→∞ plim δ̂OLSl = 0.

The approximation of the expansion bias for σ2
u ≈ 0 follows directly from the

first-order Taylor linearization of Expression (15) around σ2
u = 0.

B.7 Proof of Proposition 5

Using the results from Lemma A.3, and the fact that

2∑
t=0

htρ = ρ+ h0 − h0ρ,

T∑
t=0

nktρ = ρ+mk0 −mk0ρ, ∀k ∈ {1, 2, 3},

k+1∑
t=0

nktρ = ρ+ nk0 − nk0ρ, ∀k ∈ {1, 2, 3},

we have that

Sg = (1− ρ)σ2
x

[
1−m10 −m20

−m20 hs0 −m30,

]
,

Sl = (1− ρ)σ2
x

[
1 + h0 −n10 + n20 − h0

−n10 + n20 − h0 h0 + n30 − 2n20

]
,

such that it holds that

(Sg + Σg)
−1Sg = (Sl + Σl)

−1Sl =
(1− ρ)σ2

x

(1− ρ)σ2
x + σ2

u

I.

C Proofs for Section 4

C.1 Proof of Theorem 1

Part 1: Mean restrictions Let M = [ι, m̃,G0m̃] be the N0 × 3 matrix that collects
the mean restrictions. It is straightforward to see that the parameter vector (α, γ, δ)

λ(Aᵀ); and (iii) λ(Ak) = λ(Aᵀ)k, where the power on the set of eigenvalues is element-wise. We
know by the Perron-Frobenius theorem that all eigenvalues of G are within the unit circle, such that
the eigenvalues of G2 are all positive. Since also the eigenvalues of Gᵀ are within the unit circle,
and by using the von Neumann trace inequality, we therefore immediately have that trace(G2) ≥
trace(GᵀG2).

A14



is identified if and only if rank(M) = 3. This requires at least three unique network
positions.

Part 2: Covariance restrictions Rewriting the covariance restrictions in Expres-
sion (9) in terms of matrices, we have that

C = γ(Ṽ − σ2
uI) + δG0(Ṽ − σ2

uI). (16)

Note that γ, δ = 0 implies that C = 0 for any value of σ2
u, so we will assume that at

least one of both parameters is non-zero. The model is identified from these restric-
tions when

γ(Ṽ−σ2
uI)+δG0(Ṽ−σ2

uI) = γ′(Ṽ−σ2
u
′I)+δ′G0(Ṽ−σ2

u
′I) =⇒ (γ, δ, σ2

u) = (γ′, δ′, σ2
u
′).

The left-hand side of this expression can be rewritten as

(γ′σ2
u
′ − γσ2

u)I + (δ′σ2
u
′ − δσ2

u)G0 + (γ − γ′)Ṽ + (δ − δ′)G0Ṽ = 0.

(=⇒) Suppose I, G0, Ṽ, and G0Ṽ are linearly independent. By independence, γ = γ′

and δ = δ′. In addition, γ′σ2
u
′ = γσ2

u and δ′σ2
u
′ − δσ2

u, such that σ2
u = σ2

u
′. (⇐=)

Suppose I, G0, Ṽ, and G0Ṽ are not linearly independent. This implies that there
exist constants c1, c2, c3, c4 ∈ R, not all equal to zero, such that

c1I + c2G0 + c3Ṽ + c4G0Ṽ = 0.

Identification fails if there exist (γ, δ, σ2
u) 6= (γ′, δ′, σ2

u
′) with (γ 6= 0 or δ 6= 0) and

(γ′ 6= 0 or δ′ 6= 0) such that

c1 = γ′σ2
u
′ − γσ2

u,

c2 = δ′σ2
u
′ − δσ2

u,

c3 = γ − γ′,

c4 = δ − δ′,

holds. Direct substitution shows that this holds for (γ, δ, σ2
u) = (c1 + 2c3, c2 + 2c4, 1)

and (γ′, δ′, σ2
u
′) = (c1 + c3, c2 + c4, 2).

C.2 Proof of Proposition 6

Part 1: Mean restrictions Again, let M = [ι, m̃,G0m̃] be the N0 × 3 matrix that
collects the mean restrictions. We first show that rank(M) = 1 if and only if m̃ = cι

for some c ∈ R. It holds that rank(M) = 1 if and only if there exist c1, c2 ∈ R such
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that m̃ = c1ι and G0m̃ = c2ι. And if m̃ = c1ι, then G0m̃ = c1G0ι = c1ι. Therefore,
the event that rank(M) = 1 is non-generic.

We now show that rank(M) = 2 if and only if m̃ + cι is an eigenvector of G0

for some c ∈ R. It holds that rank(M) = 2 if and only if there exist c1, c2 ∈ R
such that G0m̃ = c1ι + c2m̃. (=⇒) We first establish that c2 6= 1, by proceeding
towards a contradiction. Suppose c2 = 1, we have that (I − G0)m̃ = −c1ι such
that (I − G0)2m̃ = 0 should hold. However, since the null space of (I − G0)2 is
1-dimensional and spanned by the vector ι, it should also hold that m̃ = c3ι for
some c3 ∈ R.22 But then M should be of rank 1, which is a contradiction. Therefore
c2 6= 1, and it is straightforward to verify that m̃ + c1

c2−1
ι is an eigenvector of G0 for

the eigenvalue c2:

G0

(
m̃ +

c1

c2 − 1
ι

)
= c1ι + c2m̃ +

c1

c2 − 1
ι

= c2

(
m̃ +

c1

c2 − 1
ι

)
.

(⇐=) Let m̃ + cι be an eigenvector of G0 with eigenvalue c3 ∈ R. Then, it holds that
G0(m̃ + cι) = c3(m̃ + cι), or alternatively that G0m̃ = c3m̃ + (c3 − 1)cι.

Since G0 does not take the form of a group, it has at least three distinct eigenval-
ues, which implies thatN0− 2 is an upper-bound for the algebraic multiplicity of its
eigenvalues. Therefore, the eigenspaces of G0 are at most of dimension N0 − 2 and
the event that rank(M) = 2 is non-generic.

Part 2: Covariance restrictions We first proof the following auxiliary lemma.

Lemma C.1. For |φ−1| ≤ 1, ker((G0 − I)(G0 − φ−1I)) = ker(G0 − I) ∪ ker(G0 − φ−1I).

Proof. Let A := (G0 − I) and B := (G0 − φ−1I). If φ = 1, we know from Footnote 22
that ker(A2) = ι, so we therefore focus on the more interesting case where φ 6= 1.

Since A and B commute, we have that ker(AB) ⊇ ker(A) ∪ ker(B). As eigen-
vectors belonging to different eigenvalues are linearly independent, we know that
rank(ker(A) ∪ ker(B)) = 1 + k, where k is the algebraic multiplicity of G for eigen-
value φ−1. Therefore rank(ker(AB)) ≥ 1 + k, such that rank(AB) ≤ N0 − k − 1.

22Since G0 is row-stochastic and irreducible, we know from the Perron-Frobenius theorem that it
has a spectral radius of 1 with algebraic multiplicity one. This implies that dim(ker((I−G0)

k)) = 1
for every k ∈ N>0, as the algebraic multiplicity of an eigenvalue λ is defined as the dimension of
the generalized eigenspace associated to that eigenvalue: i.e., the vector space of all generalized λ-
eigenvectors vλ for which (G0 − λI)nvλ = 0.
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From Sylvester’s rank inequality, we also know that

rank(AB) ≥ rank(A) + rank(B)−N0

≥ (N0 − 1) + (N0 − k)−N0

≥ N0 − k − 1.

Combining these two inequalities, we have that rank(AB) = N0 − k − 1. This
implies that ker(AB) = ker(A) ∪ ker(B), which was required.

From the covariance restrictions in Expression (16), it follows that the parameter
vector (γ, δ) is not identified if and only if rank(vec(Ṽ − σ2

uI),vec(G0(Ṽ − σ2
uI))) =

0, 1. The latter will only be of rank 0 when Ṽ = σ2
uI, which is a degenerate event.

We therefore focus on the case where the rank is 1, or equivalently (Ṽ − σ2
uI) =

φG0(Ṽ − σ2
uI) for some φ ∈ R. From this, we have that

(Ṽ − σ2
uI) = φG0(Ṽ − σ2

uI) =⇒ (Ṽ − σ2
uI)ι = φG0(Ṽ − σ2

uI)ι

⇐⇒ Ṽι− σ2
uι = φG0Ṽι− φσ2

uι

=⇒ W(Ṽι− σ2
uι) = W(φG0Ṽι− φσ2

uι)

=⇒ WṼι = φWG0Ṽι

⇐⇒ W(I− φG0)Ṽι = 0,

where W is a differencing matrix such that Wι = 0. For analytical convenience,
take local differences Wl = (G0 − I), which yields the condition

(G0 − I)(G0 − φ−1I)Ṽι = 0.

By using Lemma C.1, we have that (γ, δ) is identified if Ṽι is not an eigenvector of
G0.

As before, since G0 does not take the form of a group, it has at least three dis-
tinct eigenvalues, which implies that N0 − 2 is an upper-bound for the algebraic
multiplicity of its eigenvalues. By Lemma C.1, we therefore know that the kernel of
(G0 − I)(G0 − φ−1I) is at most a vector space of dimension N0 − 2 + 1 = N0 − 1.
Since this is a lower-dimensional vector space, non-identification is non-generic and
identification is generic.

It follows that the dimensionality of the nonidentified set is related to the size
of the largest algebraic multiplicity of G0. In graph theory, it is well known that
an adjacency matrix’s algebraic multiplicities tends to increase with the network’s
isomorphisms (Biggs, 1993).23 So informally, the more “asymmetric” the network,

23At one extreme we have the group, for which the largest algebraic multiplicity is N0 − 1, and at
the other extreme we have the random graph, for which the largest algebraic multiplicity is 1 almost
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the more “likely” the parameters of interest are identified.

C.3 Proof of Proposition 7

Let G′0 and Ṽ′ beN ′0×N ′0 matrices where (G′0)ii = 0, (G′0)ij = 1
d′

, (Ṽ′)ii = σ2
x
′+σ2

u, and
(Ṽ′)ij = ρ′1σ

2
x
′ for j 6= i. Define G′′0 and Ṽ′′ similarly, mutatis mutandis. The linear

independence condition from Theorem 1 implies that there do not exist constants
c1, c2, c3, c4 6= 0 such that

c1

[
IN ′

0
0

0 IN ′′
0

]
+ c2

[
G′0 0

0 G′′0

]
+ c3

[
Ṽ′ 0

0 Ṽ′′

]
+ c4

[
G′0Ṽ

′ 0

0 G′′0Ṽ
′′

]
= 0.

Since there are only four relevant equations to test (one for the diagonal and one
for the off-diagonal elements for each group size), this condition reduces to testing
whether the following matrix is of full rank:

R =


1 0 σ2

x
′ + σ2

u ρ′σ2
x
′

0 1
d′

ρ′σ2
x
′ 1

d′
(σ2

x
′ + σ2

u + (d′ − 1)ρ′σ2
x
′)

1 0 σ2
x
′′ + σ2

u ρ′′σ2
x
′′

0 1
d′′

ρ′′σ2
x
′′ 1

d′′
(σ2

x
′′ + σ2

u + (d′′ − 1)ρ′′σ2
x
′′)

 .

Visual inspection shows that there are no obvious linear dependencies and therefore
this matrix is generically of full rank.24

However, it is apparent that only variation in group size is not enough as the first
and third row would become identical if ρ′1 = ρ′′1 and σ2

x
′ = σ2

x
′′. We therefore study

identification for two worst-case scenarios and show that non-identification is also
for those a degenerate event.

surely.
24This point can be made more formally. Let v = {ρ′1, ρ′′1 , σ2

x
′, σ2

x
′′} ⊆ V , where V is a connected

open subset of R4
+. Since detR(v) is a nonzero analytic function of v, it holds that the set {v ∈ V |

detR(v) = 0} has Lebesgue measure zero (e.g., see Mityagin, 2020).
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Case 1: σ2
x = σ2

x
′ = σ2

x
′′ First suppose there is variation in group size and ho-

mophily, but not in the variance. Using elementary row operations we have that

det R = det


1 0 σ2

x + σ2
u ρ′1σ

2
x

0 1
d′

ρ′1σ
2
x

1
d′

(σ2
x + σ2

u + (d′ − 1)ρ′1σ
2
x)

0 0 0 (ρ′′1 − ρ′1)σ2
x

0 1
d′′

ρ′′1σ
2
x

1
d′′

(σ2
x + σ2

u + (d′′ − 1)ρ′′1σ
2
x)


= −(ρ′′1 − ρ′1)σ2

x det

[
1
d′

ρ′1σ
2
x

1
d′′

ρ′′1σ
2
x

]
= −(ρ′′1 − ρ′1)(ρ′′1d

′′ − ρ′1d′)σ4
x

1

d′d′′
.

This implies that if ρ′1 6= ρ′′1 and ρ′1d′ 6= ρ′′1d
′′, the parameters of interest are identified.

Case 2: ρ1 = ρ′1 = ρ′′1 Now suppose there is variation in group size and in the
variance, but not in homophily. Again using elementary row operations, we have
that

det R = det


1 0 σ2

x
′ + σ2

u ρ1σ
2
x
′

0 1
d′

ρ1σ
2
x
′ 1

d′
(σ2

x
′ + σ2

u + (d′ − 1)ρ1σ
2
x
′)

0 0 σ2
x
′′ − σ2

x
′ ρ(σ2

x
′′ − σ2

x
′)

0 1
d′′

ρ1σ
2
x
′′ 1

d′′
(σ2

x
′′ + σ2

u + (d′′ − 1)ρ1σ
2
x
′′)


=

1

d′
det

[
σ2
x
′′ − σ2

x
′ ρ1(σ2

x
′′ − σ2

x
′)

ρ1σ
2
x
′′ 1

d′′
(σ2

x
′′ + σ2

u + (d′′ − 1)ρ1σ
2
x
′′)

]

+
1

d′′
det

[
ρ1σ

2
x
′ 1

d′
(σ2

x
′ + σ2

u + (d′ − 1)ρ1σ
2
x
′)

σ2
x
′′ − σ2

x
′ ρ1(σ2

x
′′ − σ2

x
′)

]
= (σ2

x
′′ − σ2

x
′)[(1− ρ1)(σ2

x
′′ − σ2

x
′) + (ρ1 − ρ2

1)(σ2
x
′′d′′ − σ2

x
′d′)]

1

d′d′′
.

This implies that if σ2
x
′ 6= σ2

x
′′ and (1 − ρ)(σ2

x
′′ − σ2

x
′) 6= −(ρ − ρ2)(σ2

x
′′d′′ − σ2

x
′d′), the

parameters of interst are identified.

C.4 Proof of Theorem 2

Part 1: Mean restrictions The proof of this part is similar to that of Theorem 1.
In particular, note that WM = [0,Wm̃,WG0m̃] is the N0 × 3 matrix that collects
the demeaned mean restrictions. The parameter vector (γ, δ) is identified whenever
rank(WM) = 2.

A19



Part 2: Covariance restrictions Similarly to the proof of Theorem 1, we can rewrite
the covariance restrictions as

WC = γW(Ṽ − σ2
uI) + δWG0(Ṽ − σ2

uI).

Assuming γ 6= 0 or δ 6= 0, we have that the model is identified from these moments
when

γW(Ṽ − σ2
uI) + δWG0(Ṽ − σ2

uI)

=

γ′W(Ṽ − σ2
u
′I) + δ′WG0(Ṽ − σ2

u
′I)

=⇒ (γ, δ, σ2
u) = (γ′, δ′, σ2

u
′).

The left-hand side of this expression can be rewritten as

c1W + c2WG0 + c3WṼ + c4WG0Ṽ = 0,

where

c1 = γ′σ2
u
′ − γσ2

u,

c2 = δ′σ2
u
′ − δσ2

u

c3 = γ − γ′,

c4 = δ − δ′.

(17)

(=⇒) Suppose W, WG0, WṼ, and WG0Ṽ are linearly independent. By indepen-
dence, we have that (γ, δ, σ2

u) = (γ′, δ′, σ2
u
′). (⇐=) Suppose W, WG0, WṼ, and

WG0Ṽ are not linearly independent. This implies there exist constants c1, c2, c3, c4 ∈
R such that c1W + c2WG0 + c3WṼ + c4WG0Ṽ = 0. Identification fails if there
exist (γ, δ, σ2

u) 6= (γ′, δ′, σ2
u
′) with (γ 6= 0 or δ 6= 0) and (γ′ 6= 0 or δ′ 6= 0) such

that Expression (17) holds. Direct substitution shows that this holds for (γ, δ, σ2
u) =

(−c1 − c3, c5 + c6, 2) and (γ′, δ′, σ2
u
′) = (−c1 − 2c3, 2c5 + c6, 1).

C.5 Proof of Corollary 3

Part 1: Mean restrictions Identification fails if and only if rank((I − G0)m̃, (I −
G0)G0m̃) = 0, 1. The latter has rank 0 if and only if m̃ is a scalar multiple of ι. It
has rank 1 when there exists a c1 ∈ R such that c1(I − G0)m̃ = (I − G0)G0m̃ or
equivalently G2

0m̃ = (1 + c1)G0m̃− c1m̃. This happens if and only if (G0m̃− c1m̃)

is an eigenvector of G0 associated with eigenvalue 1. (=⇒) If (G0m̃ − c1m̃) is an
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eigenvector associated with eigenvalue 1, we have that

G0(G0m̃− c1m̃) = G0m̃− c1m̃ =⇒ G2
0m̃ = (1 + c1)G0m̃− c1m̃.

(⇐=) On the other hand, consider

G0(G0m̃− c1m̃) = G2
0m̃− c1G0m̃

= (1 + c)G0m̃− c1m̃− c1G0m̃

= G0m̃− c1m̃.

From the Perron-Frobenius theorem, we know that the eigenvector associated with
eigenvalue 1 must be a multiple of ι. Therefore, when rank((I−G0)m̃, (I−G0)G0m̃) =

1, it should hold that (G0m̃− c1m̃) = c2ι for some c2 ∈ R. From the first part of the
proof of Theorem 1, it is clear that happens if an only if m̃ + cι is an eigenvector of
G0 for some c ∈ R.

Part 2: Covariance restrictions Similarly to the proof of Theorem 1, we can rewrite
the covariance restrictions as

(I−G0)C = γ(I−G0)(Ṽ − σ2
uI) + δ(I−G0)G0(Ṽ − σ2

uI).

Assuming γ 6= 0 or δ 6= 0, we have that the model is identified from these restrictions
when

γ(I−G0)(Ṽ − σ2
uI) + δ(I−G0)G0(Ṽ − σ2

uI)

=

γ′(I−G0)(Ṽ − σ2
u
′I) + δ′(I−G0)G0(Ṽ − σ2

u
′I)

=⇒ (γ, δ, σ2
u) = (γ′, δ′, σ2

u
′).

The left-hand side of this expression can be rewritten as

c1I + c2G0 + c3Ṽ + c4G0Ṽ + c5G
2
0Ṽ + c6G

2
0 = 0,

where

c1 = γ′σ2
u
′ − γσ2

u,

c2 = (γ − δ)σ2
u − (γ′ − δ′)σ2

u
′,

c3 = γ − γ′,

c4 = −γ + δ + γ′ − δ′,

c5 = −δ + δ′,

c6 = δσ2
u − δ′σ2

u
′.

(18)
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(=⇒) Suppose I, G0, G2
0, Ṽ, G0Ṽ, and G2

0Ṽ are linearly independent. By indepen-
dence, we have that (γ, δ, σ2

u) = (γ′, δ′, σ2
u
′). (⇐=) Suppose I, G0, G2

0, Ṽ, G0Ṽ, and
G2

0Ṽ are not linearly independent. This implies there exist constants c1, c2, c3, c4, c5, c6 ∈
R such that c1I + c2G0 + c3Ṽ + c4G0Ṽ + c5G

2
0Ṽ + c6G

2
0 = 0.25 Identification fails if

there exist (γ, δ, σ2
u) 6= (γ′, δ′, σ2

u
′) with (γ 6= 0 or δ 6= 0) and (γ′ 6= 0 or δ′ 6= 0) such

that Expression (18) holds. Direct substitution shows that this holds for (γ, δ, σ2
u) =

(−c1 − c3, c5 + c6, 2) and (γ′, δ′, σ2
u
′) = (−c1 − 2c3, 2c5 + c6, 1).

C.6 Proof of Proposition 8

Since the proof of Proposition 6 already makes use of local differencing, it is also
valid for the extended specification.

D Proofs for Section 5

D.1 Proof of Proposition 9

The consistency of the GMM estimator follows from Hansen (1982).

D.2 Proof of Corollary 4

The GMM estimate based on mean restrictions

θ̂
GMM

1 = arg min

(
S−1

S∑
s=1

m1
s(θ)

)ᵀ

Ω1

(
S−1

S∑
s=1

m1
s(θ)

)
,

is equal to the solution to the first order condition(
S−1

S∑
s=1

∇θm
1
s(θ)

)ᵀ

Ω1

(
S−1

S∑
s=1

m1
s(θ)

)
= 0.

Since m1
s(θ) = ys−Qsθ and∇θm

1
s(θ) = −Qs, it follows directly from the first order

condition that
θ̂GMM =

(
Q

ᵀ
Ω1Q

)−1
Q

ᵀ
Ω1y,

which has the form of a GLS estimator.
The optimal weighting matrix is equal to the precision matrix of the moments.

25Note that the second and fourth equation are a linear combination of the other equations. These
can therefore be ignored.
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Therefore,

[Ω∗1(θ)]−1 = V(m1
s(θ))

= V(ys −Qsθ)

= V(es − γus − δus)

= V(es) + σ2
u(γ

2I + δ2GGᵀ).

D.3 Proof of Proposition 10

We need to show that C(Wzx̃,u) = 0 and C(Wzx̃,u) = 0. For the former, we have
that

C(Wzx̃,u) = C(Wzu,u)

= 0,

since diag(Wz) = 0. For the latter, we have that

C(Wzx̃,u) = C(Wzu,u)

= N−1
∑
i

E [(Wzu)i(u)i]

= N−1
∑
i,j,k

(Wz)ijgikE[ujuk]

= N−1
∑
i,j

(Wz)ijgikσ
2
u

= 0,

since Wzι = 0 implies that
∑

j(Wz)ij = 0.

D.4 Proof of Proposition 11

Validity We first show the validity of the proposed instruments. A valid instru-
ment zi should satisfy C(zi, ei− γui− δui) = 0. First consider the instrument zi = ci.
We have that

C(zi, ei) = 0,

C(zi, ui) = 0,

C(zi, ui) = 0.
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Now consider the instrument zi = (ci − E[ci])x̃i. We have that

C(zi, ei) = E[ziei] = E[ziE[ei | zi]] = 0,

C(zi, ui) = E[ziui] = E[(ci − E[ci])(xi + ui)ui] = E[(ci − E[ci])E[u2
i | ci]] = 0,

C(zi, ui) = E[ziui] = E[(ci − E[ci])(xi + ui)ui] = 0.

Finally consider the instrument zi = di(ci − E[ci])x̃i. We have that

C(zi, ei) = E[ziei] = E[ziE[ei | zi]] = 0,

C(zi, ui) = E[ziui] = E[di(ci − E[ci])(xi + ui)ui] = 0,

C(zi, ui) = E[ziui] = E[di(ci − E[ci])(xi + ui)ui] = E[di(ci − E[ci])E[u2
i | ci, di]] = 0,

where the last equality follows from the fact that diE[u2
i | ci, di] = σ2

u.

Relevance We now show the relevance of the proposed instruments. A relevant
instrument zi should satisfy C(zi, x̃i) 6= 0 or C(zi, x̃i) 6= 0. First consider the instru-
ment zi = ci. We have that

C(zi, x̃i) = C(zi, xi),

C(zi, x̃i) = C(zi, xi).

Now consider the instrument zi = (ci − E[ci])x̃i. We have that

C(zi, x̃i) = C((ci − E[ci])x̃i, x̃i)

= C(cix̃i, x̃i)− E[ci]V(x̃i)

= E[cix̃
2
i ]− E[cix̃i]E[x̃i]− E[ci]E[x̃2

i ] + E[ci]E[x̃i]
2,

= C(ci, x̃
2
i )− E[x̃i]C(ci, x̃i)

= C(ci, x
2
i )− E[xi]C(ci, xi)

= C(c,V(x | c)),

and

C(zi, x̃i) = C((ci − E[ci])x̃i, x̃i)

= C(cix̃i, x̃i)− E[ci]C(x̃i, x̃i)

= E[cix̃ix̃i]− E[cix̃i]E[x̃i]− E[ci]E[x̃ix̃i] + E[ci]E[x̃i]E[x̃i],

= C(ci, x̃ix̃i)− E[x̃i]C(ci, x̃i)

= C(ci, xixi)− E[xi]C(ci, xi)

= C(c,C(x, x | c)).
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Finally, consider the instrument zi = di(ci − E[ci])x̃i. We have that

C(zi, x̃i) = C(di(ci − E[ci])x̃i, x̃i)

= C(dicix̃i, x̃i)− E[ci]C(dix̃i, x̃i)

= C(ci, dix̃ix̃i)− E[x̃i]C(ci, dix̃i)

= C(ci, dixixi)− E[xi]C(ci, dixi)

= C(c, dC(x, x | c)),

and

C(zi, x̃i) = C(di(ci − E[ci])x̃i, x̃i)

= C(dicix̃i, x̃i)− E[ci]C(dix̃i, x̃i)

= C(ci, dix̃
2

i )− E[x̃i]C(ci, dix̃i)

= C(ci, dix
2
i )− E[xi]C(ci, dixi)

= C(c, dV(x | c)).

E Proofs for Appendix A

E.1 Proof of Lemma A.2

For strongly regular networks, it holds that

A0J = JA0 = dJ,

A2
0 = dI + λA0 + µ(J− I−A0),

where µ = d(d−λ−1)
N0−d−1

. With straightforward calculations, one can show that ιᵀAk
0ι =

N0d
k for all k ∈ N+. The expressions for the parameters of interest follow immedi-

ately:

m10 = N−2
0 ιᵀι = N−1

0 ,

m20 = N−2
0 ιᵀG0ι = N−1

0 ,

m30 = N−2
0 ιᵀG0G

ᵀ
0ι = N−1

0 ,

m10 = N−2
0 ιᵀA0ι = dN−1

0 ,

m20 = N−2
0 ιᵀG0A0ι = d−1N−2

0 ιᵀA2
0ι = dN−1

0 ,

m30 = N−2
0 ιᵀG0A0G

ᵀ
0ι = d−2N−2

0 ιᵀA3
0ι = dN−1

0 ,

m12 = 1−m10 −m11,

m22 = 1−m20 −m21,

m32 = 1−m30 −m31.
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E.2 Proof of Proposition A.1

Using the approximation for σ2
u ≈ 0 from Proposition 4, the bias is approximately

plim δ̂OLSg ≈ (1−N−1
0 )Cg(x, x) +N−1

0 Vg(x)

∆g

σ2
uγ.

By Lemma A.3, we have that

Cg(x, x) = ρ1 −m20 −m21ρ1 −m22ρ2,

Vg(x) = 1−m10 −m11ρ1 −m12ρ2,

Vg(x) = h0 + h1ρ1 + h2ρ2 −m30 −m31ρ1 −m32ρ2.

The assumption of strongly regular graphs simplifies things further. Using the ex-
pressions from Lemma A.2, we obtain

Cg(x, x) = N−1
0 (ρ1 − 1) + t1(ρ1 − ρ2),

Vg(x) =
(
N−1

0 − 1
)

(ρ1 − 1) + t1(ρ1 − ρ2),

Vg(x) = (t1 − t2)(ρ1 − ρ2) +
(
N−1

0 − h0

)
(ρ1 − 1),

where

t1 = 1− d+ 1

N0

t2 = 1− λ+ 1

d
(= h2).

Now suppose that N0 →∞. It follows immediately that

plim δ̂OLSg ≈ ρ1 − ρ2

h0(1− ρ2)2 + h1(ρ1 − ρ2)(1− ρ2)− (ρ1 − ρ2)2
σ2
uγ.

To establish the directions of the partial derivatives, it is convenient to denote the
denominator as D = h0(1 − ρ2)2 + h1(ρ1 − ρ2)(1 − ρ2) − (ρ1 − ρ2)2. By the quotient
rule, we have that

sign
(
∂ ρ1−ρ2

D

∂ρ1

)
= sign

(
h0(1− ρ2)2 + (ρ1 − ρ2)2

)
≥ 0,

for claim (i),

sign
(
∂ ρ1−ρ2

D

∂ρ2

)
= sign(−D − [ρ1 − ρ2][−2h0(1− ρ2) + h1(2ρ2 − ρ1 − 1) + 2(ρ1 − ρ2)]) ≤ 0,
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for claim (ii),

sign
(
∂ ρ1−ρ2

D

∂h0

)
= sign(−(ρ1 − ρ2)(1− ρ2)2) ≤ 0,

for claim (iii), and

sign
(
∂ ρ1−ρ2

D

∂h1

)
= sign(−(ρ1 − ρ2)(ρ1 − ρ2)(1− ρ2)) ≤ 0,

for claim (iv).

E.3 Proof of Lemma A.3

The expressions for the variance-covariance matrices of the measurement error are
in the proof of Proposition 4. In this section, we focus on the variance-covariance
matrices of the regressors.

E.3.1 Global transformation

For the variance-covariance matrix Sg, we have that

Sg = S−N−1
0

[
C(xsi, (Qx)si) C(xsi, (Qx)si)

C(xsi, (Qx)si) C(xsi, (Qx)si)

]
.

For the covariances C(xsi, (Qx)si), C(xsi, (Qx)si), and C(xsi, (Qx)si), we have that

C(xsi, (Qx)si) = E(xsi(Qx)si)− E(xsi)E((Qx)si)

= N−1
0

∑
i0,j0

E(xi0xj0)−N0µ
2
x

= N−1
0

∑
i0,j0

(C(xi0 , xj0) + µ2
x)−N0µ

2
x

= N−1
0

(
T∑
t=0

(ιᵀA
(t)
0 ι)ρt

)
σ2
x

= N0

(
T∑
t=0

m1tρt

)
σ2
x,
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C(xsi, (Qx)si) = E(xsi(Qx)si)− E(xsi)E((Qx)si)

= N−1
0

∑
i0,j0,k0

gj0k0E(xi0xk0)−N0µ
2
x

= N−1
0

∑
i0,j0,k0

gj0k0(C(xi0 , xk0) + µ2
x)−N0µ

2
x

= N−1
0

(
T∑
t=0

(ιᵀG0A
(t)
0 ι)ρt

)
σ2
x

= N0

(
T∑
t=0

m2tρt

)
σ2
x,

and

C(xsi, (Qx)si) = E(xsi(Qx)si)− E(xsi)E((Qx)si)

= N−1
0

∑
i0,j0,k0,l0

gi0j0gk0l0E(xj0xl0)−N0µ
2
x

= N−1
0

∑
i0,j0,k0,l0

gi0j0gk0l0(C(xj0xl0) + µ2
x)−N0µ

2
x

= N−1
0

(
T∑
t=0

(ιᵀG0A
(t)
0 Gᵀ

0ι)ρt

)
σ2
x

= N0

(
T∑
t=0

m3tρt

)
σ2
x,

where
∑T

t=0m1d =
∑T

t=0m2d =
∑T

t=0m3d = 1. Putting things together, we have that

Sg = V

[
1−

∑T
t=0m1tρt ρ1 −

∑T
t=0m2tρt

ρ1 −
∑T

t=0m2tρt
∑2

t=0 htρt −
∑T

t=0 m3tρt

]
.

E.3.2 Local transformation

For the variance-covariance matrix Sl, we have that

Sl = S +

[
V(x)− 2C(x, x) −C(xsi, (G

2x)si) + C(xsi, (G
2x)si)− V(x)

−C(xsi, (G
2x)si) + C(xsi, (G

2x)si)− V(x) V((G2x)si)− 2C(xsi, (G
2x)si)

]
.
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For the covariances C(xsi, (G
2x)si) and C(xsi, (G

2x)si), and the variance V((G2x)si),
we have that

C(xsi, (G
2x)si) = E(xsi(G

2x)si)− E(xsi)E((G2x)si)

= N−1
0

∑
i0

E(xi0(G
2x)i0)− µ2

x

= N−1
0

∑
i0,j0,k0

gi0j0gj0k0E(xi0xk0)− µ2
x

= N−1
0

(
2∑
t=0

trace(G2
0A

(t)
0 )ρt

)
σ2
x

=

(
2∑
t=0

n1tρt

)
σ2
x,

C(xsi, (G
2x)si) = E(xsi(G

2x)si)− E(xsi)E((G2x)si)

= N−1
0

∑
i0

E(xi0(G
2x)i0)− µ2

x

= N−1
0

∑
i0,j0,k0,l0

gi0j0gi0k0gk0l0E(xj0xl0)− µ2
x

= N−1
0

(
3∑
t=0

trace(Gᵀ
0G

2
0A

(t)
0 )ρt

)
σ2
x

=

(
3∑
t=0

n2tρt

)
σ2
x,

and

V((G2x)si) = E((G2x)2
si)− E((G2x)si)

2

= N−1
0

∑
i0

(G2x)2
i0

)− µ2
x

= N−1
0

∑
i0,j0,k0,l0,m0

gi0j0gj0k0gi0l0gl0,m0xk0xm0 − µ2
x

= N−1
0

(
4∑
t=0

trace((Gᵀ
0)2G2

0A
(t)
0 )ρt

)
σ2
x

=

(
4∑
t=0

n3tρt

)
σ2
x,

where
∑2

t=0 n1t =
∑3

t=0 n2t =
∑4

t=0 n3t = 1. Putting things together, we have that

Sl = V

[
1 +

∑2
t=0 htρt − 2ρ1 ρ1 −

∑2
t=0 n1tρt +

∑3
t=0 n2tρt −

∑2
t=0 htρt

ρ1 −
∑2

t=0 n1tρt +
∑3

t=0 n2tρt −
∑2

t=0 htρt
∑2

t=0 htρ
t +
∑4

t=0 n3tρt − 2
∑3

t=0 n2tρt

]
.
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